ﻻ يوجد ملخص باللغة العربية
Deep learning technique has yielded significant improvements in point cloud completion with the aim of completing missing object shapes from partial inputs. However, most existing methods fail to recover realistic structures due to over-smoothing of fine-grained details. In this paper, we develop a voxel-based network for point cloud completion by leveraging edge generation (VE-PCN). We first embed point clouds into regular voxel grids, and then generate complete objects with the help of the hallucinated shape edges. This decoupled architecture together with a multi-scale grid feature learning is able to generate more realistic on-surface details. We evaluate our model on the publicly available completion datasets and show that it outperforms existing state-of-the-art approaches quantitatively and qualitatively. Our source code is available at https://github.com/xiaogangw/VE-PCN.
We propose a novel approach for probabilistic generative modeling of 3D shapes. Unlike most existing models that learn to deterministically translate a latent vector to a shape, our model, Point-Voxel Diffusion (PVD), is a unified, probabilistic form
Deep-learning based salient object detection methods achieve great improvements. However, there are still problems existing in the predictions, such as blurry boundary and inaccurate location, which is mainly caused by inadequate feature extraction a
3D hand shape and pose estimation from a single depth map is a new and challenging computer vision problem with many applications. The state-of-the-art methods directly regress 3D hand meshes from 2D depth images via 2D convolutional neural networks,
3D hand shape and pose estimation from a single depth map is a new and challenging computer vision problem with many applications. Existing methods addressing it directly regress hand meshes via 2D convolutional neural networks, which leads to artifa
A unified neural network structure is presented for joint 3D object detection and point cloud segmentation in this paper. We leverage rich supervision from both detection and segmentation labels rather than using just one of them. In addition, an ext