ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic Properties of Tetraazaperopyrene Derivatives on Au(111): Energy Level Alignment and Interfacial Band Formation

88   0   0.0 ( 0 )
 نشر من قبل Katharina Franke
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

N-Heteropolycyclic aromatic compounds are promising organic electron-transporting semiconductors for applications in field effect transistors. Here, we investigated the electronic properties of 1,3,8,10-tetraazaperopyrene derivatives adsorbed on Au(111) using a complementary experimental approach, namely scanning tunneling spectroscopy and two-photon photoemission combined with state-of-the-art density functional calculations. We find signatures of weak physisorption of the molecular layers, such as the absence of charge transfer, a nearly unperturbed surface state and an intact herringbone reconstruction underneath the molecular layer. Interestingly, molecular states in the energy region of the emph{sp}- and emph{d}-bands of the Au(111) substrate exhibit hole-like dispersive character. We ascribe this band character to hybridization with the delocalized states of the substrate. We suggest that such bands, which effectively leave the molecular frontier orbitals largely unperturbed, to be a promising lead for the design of organic-metal interfaces with a low charge injection barrier.

قيم البحث

اقرأ أيضاً

High quality graphene nanoribbons (GNRs) grown by on-surface synthesis strategies with atomic precision can be controllably doped by inserting heteroatoms or chemical groups in the molecular precursors. Here, we study the electronic structure of armc hair GNRs substitutionally doped with di-boron moieties at the center, through a combination of scanning tunneling spectroscopy, angle-resolved photoemission, and density functional theory simulations. Boron atoms appear with a small displacement towards the surface signaling their stronger interaction with the metal. We find two boron-rich flat bands emerging as impurity states inside the GNR band gap, one of them particularly broadened after its hybridization with the gold surface states. In addition, the boron atoms shift the conduction and valence bands of the pristine GNR away from the gap edge, and leave unaffected the bands above and below, which become the new frontier bands and have negligible boron character. This is due to the selective mixing of boron states with GNR bands according to their symmetry. Our results depict that the GNRs band structure can be tuned by modifying the separation between di-boron moieties.
Surface-bound porphyrins are promising candidates for molecular switches, electronics and spintronics. Here, we studied the structural and the electronic properties of Fe-tetra-pyridil-porphyrin adsorbed on Au(111) in the monolayer regime. We combine d scanning tunneling microscopy/spectroscopy, ultraviolet photoemission, and two-photon photoemission to determine the energy levels of the frontier molecular orbitals. We also resolved an excitonic state with a binding energy of 420 meV, which allowed us to compare the electronic transport gap with the optical gap.
Pinning single molecules at desired positions can provide opportunities to fabricate bottom-up designed molecular machines. Using the combined approach of scanning tunneling microscopy and density functional theory, we report on tip-induced anchoring of Niphthalocyanine molecules on an Au(111) substrate. We demonstrate that the tip-induced current leads to the dehydrogenation of a benzene-like ligand in the molecule, which subsequently creates chemical bonds between the molecule and the substrate. It is also found that the diffusivity of Ni-phthalocyanine molecules is dramatically reduced when the molecules are anchored on the Au adatoms produced by bias pulsing. The tip-induced molecular anchoring would be readily applicable to other functional molecules that contain similar ligands.
Control of atomic-scale interfaces between materials with distinct electronic structures is crucial for the design and fabrication of most electronic devices. In the case of two-dimensional (2D) materials, disparate electronic structures can be reali zed even within a single uniform sheet, merely by locally applying different vertical bias voltages. Indeed, it has been suggested that nanoscale electronic patterning in a single sheet can be achieved by placing the 2D material on a suitably pre-patterned substrate, exploiting the sensitivity of 2D materials to their environment via band alignment, screening or hybridization. Here, we utilize the inherently nano-structured single layer (SL) and bilayer (BL) graphene on silicon carbide to laterally tune the electrostatic gating of adjacent SL tungsten disulphide (WS$_2$) in a van der Waals heterostructure. The electronic band alignments are mapped in energy and momentum space using angle-resolved photoemission with a spatial resolution on the order of 500~nm (nanoARPES). We find that the SL WS$_2$ band offsets track the work function of the underlying SL and BL graphene, and we relate such changes to observed lateral patterns of exciton and trion luminescence from SL WS$_2$, demonstrating ultimate control of optoelectronic properties at the nanoscale.
The intercalation of Eu underneath Gr on Ir(111) is comprehensively investigated by microscopic, magnetic, and spectroscopic measurements, as well as by density functional theory. Depending on the coverage, the intercalated Eu atoms form either a $(2 times 2)$ or a $(sqrt{3} times sqrt{3})$R$30^{circ}$ superstructure with respect to Gr. We investigate the mechanisms of Eu penetration through a nominally closed Gr sheet and measure the electronic structures and magnetic properties of the two intercalation systems. Their electronic structures are rather similar. Compared to Gr on Ir(111), the Gr bands in both systems are essentially rigidly shifted to larger binding energies resulting in n-doping. The hybridization of the Ir surface state $S_1$ with Gr states is lifted, and the moire superperiodic potential is strongly reduced. In contrast, the magnetic behavior of the two intercalation systems differs substantially as found by X-ray magnetic circular dichroism. The $(2 times 2)$ Eu structure displays plain paramagnetic behavior, whereas for the $(sqrt{3} times sqrt{3})$R$30^{circ}$ structure the large zero-field susceptibility indicates ferromagnetic coupling, despite the absence of hysteresis at 10 K. For the latter structure, a considerable easy-plane magnetic anisotropy is observed and interpreted as shape anisotropy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا