ترغب بنشر مسار تعليمي؟ اضغط هنا

Europium Underneath Graphene on Ir(111): Intercalation Mechanism, Magnetism, and Band Structure

147   0   0.0 ( 0 )
 نشر من قبل Felix Huttmann
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The intercalation of Eu underneath Gr on Ir(111) is comprehensively investigated by microscopic, magnetic, and spectroscopic measurements, as well as by density functional theory. Depending on the coverage, the intercalated Eu atoms form either a $(2 times 2)$ or a $(sqrt{3} times sqrt{3})$R$30^{circ}$ superstructure with respect to Gr. We investigate the mechanisms of Eu penetration through a nominally closed Gr sheet and measure the electronic structures and magnetic properties of the two intercalation systems. Their electronic structures are rather similar. Compared to Gr on Ir(111), the Gr bands in both systems are essentially rigidly shifted to larger binding energies resulting in n-doping. The hybridization of the Ir surface state $S_1$ with Gr states is lifted, and the moire superperiodic potential is strongly reduced. In contrast, the magnetic behavior of the two intercalation systems differs substantially as found by X-ray magnetic circular dichroism. The $(2 times 2)$ Eu structure displays plain paramagnetic behavior, whereas for the $(sqrt{3} times sqrt{3})$R$30^{circ}$ structure the large zero-field susceptibility indicates ferromagnetic coupling, despite the absence of hysteresis at 10 K. For the latter structure, a considerable easy-plane magnetic anisotropy is observed and interpreted as shape anisotropy.

قيم البحث

اقرأ أيضاً

Properties of many layered materials, including copper- and iron-based superconductors, topological insulators, graphite and epitaxial graphene can be manipulated by inclusion of different atomic and molecular species between the layers via a process known as intercalation. For example, intercalation in graphite can lead to superconductivity and is crucial in the working cycle of modern batteries and supercapacitors. Intercalation involves complex diffusion processes along and across the layers, but the microscopic mechanisms and dynamics of these processes are not well understood. Here we report on a novel mechanism for intercalation and entrapment of alkali-atoms under epitaxial graphene. We find that the intercalation is adjusted by the van der Waals interaction, with the dynamics governed by defects anchored to graphene wrinkles. Our findings are relevant for the future design and application of graphene-based nano-structures. Similar mechanisms can also play a role for intercalation of layered materials.
Angle-resolved photoemission spectroscopy and Auger electron spectroscopy have been applied to study the intercalation process of silver underneath a monolayer of graphite (MG) on Ni(111). The room-temperature deposition of silver on top of MG/Ni(111 ) system leads to the islands-like growth of Ag on top of the MG. Annealing of the as-deposited system at temperature of 350-450 C results in the intercalation of about 1-2 ML of Ag underneath MG on Ni(111) independently of the thickness of pre-deposited Ag film (3-100 A). The intercalation of Ag is followed by a shift of the graphite-derived valence band states towards energies which are slightly larger than ones characteristic for pristine graphite. This observation is understood in terms of a weakening of chemical bonding between the MG and the substrate in the MG/Ag/Ni(111) system with a small MG/Ni(111) covalent contribution to this interaction.
We report on the observation of photoluminescence (PL) with a narrow 18 meV peak width from molecular beam epitaxy grown MoS$_2$ on graphene/Ir(111). This observation is explained in terms of a weak graphene-MoS$_2$ interaction that prevents PL quenc hing expected for a metallic substrate. The weak interaction of MoS$_2$ with the graphene is highlighted by angle-resolved photoemission spectroscopy and temperature dependent Raman spectroscopy. These methods reveal that there is no hybridization between electronic states of graphene and MoS$_2$ and a different thermal expansion of graphene and MoS$_2$. Molecular beam epitaxy grown MoS2 on graphene is therefore an important platform for optoelectronics which allows for large area growth with controlled properties.
We have investigated the magnetism of the bare and graphene-covered (111) surface of a Ni single crystal employing three different magnetic imaging techniques and ab initio calculations, covering length scales from the nanometer regime up to several millimeters. With low temperature spinpolarized scanning tunneling microscopy (SP-STM) we find domain walls with widths of 60 - 90 nm, which can be moved by small perpendicular magnetic fields. Spin contrast is also achieved on the graphene-covered surface, which means that the electron density in the vacuum above graphene is substantially spin-polarized. In accordance with our ab initio calculations we find an enhanced atomic corrugation with respect to the bare surface, due to the presence of the carbon pz orbitals and as a result of the quenching of Ni surface states. The latter also leads to an inversion of spinpolarization with respect to the pristine surface. Room temperature Kerr microscopy shows a stripe like domain pattern with stripe widths of 3 - 6 {mu}m. Applying in-plane-fields, domain walls start to move at about 13 mT and a single domain state is achieved at 140 mT. Via scanning electron microscopy with polarization analysis (SEMPA) a second type of modulation within the stripes is found and identified as 330 nm wide V-lines. Qualitatively, the observed surface domain pattern originates from bulk domains and their quasi-domain branching is driven by stray field reduction.
We address the electronic structure and magnetic properties of vacancies and voids both in graphene and graphene ribbons. Using a mean field Hubbard model, we study the appearance of magnetic textures associated to removing a single atom (vacancy) an d multiple adjacent atoms (voids) as well as the magnetic interactions between them. A simple set of rules, based upon Lieb theorem, link the atomic structure and the spatial arrangement of the defects to the emerging magnetic order. The total spin $S$ of a given defect depends on its sublattice imbalance, but some defects with S=0 can still have local magnetic moments. The sublattice imbalance also determines whether the defects interact ferromagnetically or antiferromagnetically with one another and the range of these magnetic interactions is studied in some simple cases. We find that in semiconducting armchair ribbons and two-dimensional graphene without global sublattice imbalance there is maximum defect density above which local magnetization disappears. Interestingly, the electronic properties of semiconducting graphene ribbons with uncoupled local moments are very similar to those of diluted magnetic semiconductors, presenting giant Zeeman splitting.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا