ﻻ يوجد ملخص باللغة العربية
We prove two theorems concerning isogenies of elliptic curves over function fields. The first one describes the variation of the height of the $j$-invariant in an isogeny class. The second one is an isogeny estimate, providing an explicit bound on the degree of a minimal isogeny between two isogenous elliptic curves. We also give several corollaries of these two results.
Let $C$ be a smooth projective curve over $mathbb{F}_q$ with function field $K$, $E/K$ a nonconstant elliptic curve and $phi:mathcal{E}to C$ its minimal regular model. For each $Pin C$ such that $E$ has good reduction at $P$, i.e., the fiber $mathcal
We provide in this paper an upper bound for the number of rational points on a curve defined over a one variable function field over a finite field. The bound only depends on the curve and the field, but not on the Jacobian variety of the curve.
We study the Jacobian $J$ of the smooth projective curve $C$ of genus $r-1$ with affine model $y^r = x^{r-1}(x + 1)(x + t)$ over the function field $mathbb{F}_p(t)$, when $p$ is prime and $rge 2$ is an integer prime to $p$. When $q$ is a power of $p$
Let F be the cubic field of discriminant -23 and O its ring of integers. Let Gamma be the arithmetic group GL_2 (O), and for any ideal n subset O let Gamma_0 (n) be the congruence subgroup of level n. In a previous paper, two of us (PG and DY) comput
We present a method for constructing optimized equations for the modular curve X_1(N) using a local search algorithm on a suitably defined graph of birationally equivalent plane curves. We then apply these equations over a finite field F_q to efficie