ترغب بنشر مسار تعليمي؟ اضغط هنا

Matrix Perturbation Theory of Inter-Area Oscillations

85   0   0.0 ( 0 )
 نشر من قبل Julian Fritzsch
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Interconnecting power systems has a number of advantages such as better electric power quality, increased reliability of power supply, economies of scales through production and reserve pooling and so forth. Simultaneously, it may jeopardize the overall system stability with the emergence of so-called inter-area oscillations, which are coherent oscillations involving groups of rotating machines separated by large distances up to thousands of kilometers. These often weakly damped modes may have harmful consequences for grid operation, yet despite decades of investigations, the mechanisms that generate them are still poorly understood, and the existing theories are based on assumptions that are not satisfied in real power grids where such modes are observed. Here we construct a matrix perturbation theory of large interconnected power systems that clarifies the origin and the conditions for the emergence of inter-area oscillations. We show that coherent inter-area oscillations emerge from the zero-modes of a multi-area network Laplacian matrix, which hybridize only weakly with other modes, even under significant capacity of the inter-area tie-lines, i.e. even when the standard assumption of area partitioning is not satisfied. The general theory is illustrated on a two-area system, and numerically applied to the well-connected PanTaGruEl model of the synchronous grid of continental Europe.

قيم البحث

اقرأ أيضاً

Neuromorphic networks can be described in terms of coarse-grained variables, where emergent sustained behaviours spontaneously arise if stochasticity is properly taken in account. For example it has been recently found that a directed linear chain of connected patch of neurons amplifies an input signal, also tuning its characteristic frequency. Here we study a generalization of such a simple model, introducing heterogeneity and variability in the parameter space and long-range interactions, breaking, in turn, the preferential direction of information transmission of a directed chain. On one hand, enlarging the region of parameters leads to a more complex state space that we analytically characterise; moreover, we explicitly link the strength distribution of the non-local interactions with the frequency distribution of the network oscillations. On the other hand, we found that adding long-range interactions can cause the onset of novel phenomena, as coherent and synchronous oscillations among all the interacting units, which can also coexist with the amplification of the signal.
130 - I.A. Dmitriev , A.D. Mirlin , 2007
We develop a systematic theory of microwave-induced oscillations in magnetoresistivity of a 2D electron gas in the vicinity of fractional harmonics of the cyclotron resonance, observed in recent experiments. We show that in the limit of well-separate d Landau levels the effect is dominated by a change of the distribution function induced by multiphoton processes. At moderate magnetic field, a single-photon mechanism originating from the microwave-induced sidebands in the density of states of disorder-broadened Landau levels becomes important.
167 - Milan Krbalek , Tomas Hobza 2015
We introduce a special class of random matrices (DUE) whose spectral statistics corresponds to statistics of microscopical quantities detected in vehicular flows. Comparing the level spacing distribution (for ordered eigenvalues in unfolded spectra o f DUE matrices) with the time-clearance distribution extracted from various areas of the flux-density diagram (evaluated from original traffic data measured on Czech expressways with high occupancies) we demonstrate that the set of classical systems showing an universality associated with Random Matrix Ensembles can be extended by traffic systems.
Density matrix perturbation theory (DMPT) is known as a promising alternative to the Rayleigh-Schrodinger perturbation theory, in which the sum-over-state (SOS) is replaced by algorithms with perturbed density matrices as the input variables. In this article, we formulate and discuss three types of DMPT, with two of them based only on density matrices: the approach of Kussmann and Ochsenfeld [J. Chem. Phys.127, 054103 (2007)] is reformulated via the Sylvester equation, and the recursive DMPT of A.M.N. Niklasson and M. Challacombe [Phys. Rev. Lett. 92, 193001 (2004)] is extended to the hole-particle canonical purification (HPCP) from [J. Chem. Phys. 144, 091102 (2016)]. Comparison of the computational performances shows that the aformentioned methods outperform the standard SOS. The HPCP-DMPT demonstrates stable convergence profiles but at a higher computational cost when compared to the original recursive polynomial method
We develop a theory of magnetooscillations in the photoconductivity of a two-dimensional electron gas observed in recent experiments. The effect is governed by a change of the electron distribution function induced by the microwave radiation. We anal yze a nonlinearity with respect to both the dc field and the microwave power, as well as the temperature dependence determined by the inelastic relaxation rate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا