ﻻ يوجد ملخص باللغة العربية
Density matrix perturbation theory (DMPT) is known as a promising alternative to the Rayleigh-Schrodinger perturbation theory, in which the sum-over-state (SOS) is replaced by algorithms with perturbed density matrices as the input variables. In this article, we formulate and discuss three types of DMPT, with two of them based only on density matrices: the approach of Kussmann and Ochsenfeld [J. Chem. Phys.127, 054103 (2007)] is reformulated via the Sylvester equation, and the recursive DMPT of A.M.N. Niklasson and M. Challacombe [Phys. Rev. Lett. 92, 193001 (2004)] is extended to the hole-particle canonical purification (HPCP) from [J. Chem. Phys. 144, 091102 (2016)]. Comparison of the computational performances shows that the aformentioned methods outperform the standard SOS. The HPCP-DMPT demonstrates stable convergence profiles but at a higher computational cost when compared to the original recursive polynomial method
Variational approaches for the calculation of vibrational wave functions and energies are a natural route to obtain highly accurate results with controllable errors. However, the unfavorable scaling and the resulting high computational cost of standa
Recently a novel approach to find approximate exchange-correlation functionals in density-functional theory (DFT) was presented (U. Mordovina et. al., JCTC 15, 5209 (2019)), which relies on approximations to the interacting wave function using densit
The idea of using fragment embedding to circumvent the high computational scaling of accurate electronic structure methods while retaining high accuracy has been a long-standing goal for quantum chemists. Traditional fragment embedding methods mainly
We introduce an approximation to the short-range correlation energy functional with multide-terminantal reference involved in a variant of range-separated density-functional theory. This approximation is a local functional of the density, the density
Approximate natural orbitals are investigated as a way to improve a Monte Carlo configuration interaction (MCCI) calculation. We introduce a way to approximate the natural orbitals in MCCI and test these and approximate natural orbitals from MP2 and