ﻻ يوجد ملخص باللغة العربية
The prediction of express delivery sequence, i.e., modeling and estimating the volumes of daily incoming and outgoing parcels for delivery, is critical for online business, logistics, and positive customer experience, and specifically for resource allocation optimization and promotional activity arrangement. A precise estimate of consumer delivery requests has to involve sequential factors such as shopping behaviors, weather conditions, events, business campaigns, and their couplings. Besides, conventional sequence prediction assumes a stable sequence evolution, failing to address complex nonlinear sequences and various feature effects in the above multi-source data. Although deep networks and attention mechanisms demonstrate the potential of complex sequence modeling, extant networks ignore the heterogeneous and coupling situation between features and sequences, resulting in weak prediction accuracy. To address these issues, we propose DeepExpress - a deep-learning based express delivery sequence prediction model, which extends the classic seq2seq framework to learning complex coupling between sequence and features. DeepExpress leverages an express delivery seq2seq learning, a carefully-designed heterogeneous feature representation, and a novel joint training attention mechanism to adaptively map heterogeneous data, and capture sequence-feature coupling for precise estimation. Experimental results on real-world data demonstrate that the proposed method outperforms both shallow and deep baseline models.
Prediction tasks about students have practical significance for both student and college. Making multiple predictions about students is an important part of a smart campus. For instance, predicting whether a student will fail to graduate can alert th
We present trellis networks, a new architecture for sequence modeling. On the one hand, a trellis network is a temporal convolutional network with special structure, characterized by weight tying across depth and direct injection of the input into de
The availability of large amounts of time series data, paired with the performance of deep-learning algorithms on a broad class of problems, has recently led to significant interest in the use of sequence-to-sequence models for time series forecastin
Medical time-series datasets have unique characteristics that make prediction tasks challenging. Most notably, patient trajectories often contain longitudinal variations in their input-output relationships, generally referred to as temporal condition
Potential crowd flow prediction for new planned transportation sites is a fundamental task for urban planners and administrators. Intuitively, the potential crowd flow of the new coming site can be implied by exploring the nearby sites. However, the