ترغب بنشر مسار تعليمي؟ اضغط هنا

A Note on the Permuted Puzzles Toy Conjecture

128   0   0.0 ( 0 )
 نشر من قبل Mary Wootters
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this note, we show that a Toy Conjecture made by (Boyle, Ishai, Pass, Wootters, 2017) is false, and propose a new one. Our attack does not falsify the full (non-toy) conjecture in that work, and it is our hope that this note will help further the analysis of that conjecture. Independently, (Boyle, Holmgren, Ma, Weiss, 2021) have obtained similar results.



قيم البحث

اقرأ أيضاً

259 - Maysam Maysami Sadr 2019
The Frankl conjecture (called also union-closed sets conjecture) is one of the famous unsolved conjectures in combinatorics of finite sets. In this short note, we introduce and to some extent justify some variants of the Frankl conjecture.
In this note we consider submersions from compact manifolds, homotopy equivalent to the Eschenburg or Bazaikin spaces of positive curvature. We show that if the submersion is nontrivial, the dimension of the base is greater than the dimension of the fiber. Together with previous results, this proves the Petersen-Wilhelm Conjecture for all the known compact manifolds with positive curvature.
We use logarithmic {ell}-class groups to take a new view on Greenbergs conjecture about Iwasawa {ell}-invariants of a totally real number field K. By the way we recall and complete some classical results. Under Leopoldts conjecture, we prove that Gre enbergs conjecture holds if and only if the logarithmic classes of K principalize in the cyclotomic Z{ell}-extensions of K. As an illustration of our approach, in the special case where the prime {ell} splits completely in K, we prove that the sufficient condition introduced by Gras just asserts the triviality of the logarithmic class group of K.Last, in the abelian case, we provide an explicit description of the circular class groups in connexion with the so-called weak conjecture.
Let $G=(V(G), E(G))$ be a multigraph with maximum degree $Delta(G)$, chromatic index $chi(G)$ and total chromatic number $chi(G)$. The Total Coloring conjecture proposed by Behzad and Vizing, independently, states that $chi(G)leq Delta(G)+mu(G) +1$ f or a multigraph $G$, where $mu(G)$ is the multiplicity of $G$. Moreover, Goldberg conjectured that $chi(G)=chi(G)$ if $chi(G)geq Delta(G)+3$ and noticed the conjecture holds when $G$ is an edge-chromatic critical graph. By assuming the Goldberg-Seymour conjecture, we show that $chi(G)=chi(G)$ if $chi(G)geq max{ Delta(G)+2, |V(G)|+1}$ in this note. Consequently, $chi(G) = chi(G)$ if $chi(G) ge Delta(G) +2$ and $G$ has a spanning edge-chromatic critical subgraph.
68 - Christian Maire 2019
In this short note we confirm the relation between the generalized $abc$-conjecture and the $p$-rationality of number fields. Namely, we prove that given K$/mathbb{Q}$ a real quadratic extension or an imaginary $S_3$-extension, if the generalized $ab c$-conjecture holds in K, then there exist at least $c,log X$ prime numbers $p leq X$ for which K is $p$-rational, here $c$ is some nonzero constant depending on K. The real quadratic case was recently suggested by Bockle-Guiraud-Kalyanswamy-Khare.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا