ﻻ يوجد ملخص باللغة العربية
The Frankl conjecture (called also union-closed sets conjecture) is one of the famous unsolved conjectures in combinatorics of finite sets. In this short note, we introduce and to some extent justify some variants of the Frankl conjecture.
Frankl and Furedi conjectured in 1989 that the maximum Lagrangian, denoted by $lambda_r(m)$, among all $r$-uniform hypergraphs of fixed size $m$ is achieved by the minimum hypergraph $C_{r,m}$ under the colexicographic order. We say $m$ in {em princi
The Lagrangian of a hypergraph has been a useful tool in hypergraph extremal problems. In most applications, we need an upper bound for the Lagrangian of a hypergraph. Frankl and Furedi in cite{FF} conjectured that the $r$-graph with $m$ edges formed
Let $G=(V(G), E(G))$ be a multigraph with maximum degree $Delta(G)$, chromatic index $chi(G)$ and total chromatic number $chi(G)$. The Total Coloring conjecture proposed by Behzad and Vizing, independently, states that $chi(G)leq Delta(G)+mu(G) +1$ f
In this note we consider submersions from compact manifolds, homotopy equivalent to the Eschenburg or Bazaikin spaces of positive curvature. We show that if the submersion is nontrivial, the dimension of the base is greater than the dimension of the
We use logarithmic {ell}-class groups to take a new view on Greenbergs conjecture about Iwasawa {ell}-invariants of a totally real number field K. By the way we recall and complete some classical results. Under Leopoldts conjecture, we prove that Gre