ﻻ يوجد ملخص باللغة العربية
Extremely large-scale multiple-input-multiple-output (XL-MIMO) with hybrid precoding is a promising technique to meet the high data rate requirements for future 6G communications. To realize efficient hybrid precoding, it is essential to obtain accurate channel state information. Existing channel estimation algorithms with low pilot overhead heavily rely on the channel sparsity in the angle domain, which is achieved by the classical far-field planar wavefront assumption. However, due to the non-negligible near-field spherical wavefront property in XL-MIMO systems, this channel sparsity in the angle domain is not available anymore, and thus existing far-field channel estimation schemes will suffer from severe performance loss. To address this problem, in this paper we study the near-field channel estimation by exploiting the polar-domain sparse representation of the near-field XL-MIMO channel. Specifically, unlike the classical angle-domain representation that only considers the angle information of the channel, we propose a new polar-domain representation, which simultaneously accounts for both the angle and distance information. In this way, the near-field channel also exhibits sparsity in the polar domain. By exploiting the channel sparsity in the polar domain, we propose the on-grid and off-grid near-field channel estimation schemes for XL-MIMO. Firstly, an on-grid polar-domain simultaneous orthogonal matching pursuit (P-SOMP) algorithm is proposed to efficiently estimate the near-field channel. Furthermore, to solve the resolution limitation of the on-grid P-SOMP algorithm, an off-grid polar-domain simultaneous iterative gridless weighted (P-SIGW) algorithm is proposed to improve the estimation accuracy, where the parameters of the near-field channel are directly estimated. Finally, numerical results are provided to verify the effectiveness of the proposed schemes.
Extremely large-scale massive MIMO (XL-MIMO) is a promising technique for future 6G communications. The sharp increase of BS antennas leads to the unaffordable channel estimation overhead. Existing low-overhead channel estimation schemes are based on
The problem of wideband massive MIMO channel estimation is considered. Targeting for low complexity algorithms as well as small training overhead, a compressive sensing (CS) approach is pursued. Unfortunately, due to the Kronecker-type sensing (measu
Intelligent reflecting surface (IRS) is a promising enabler for next-generation wireless communications due to its reconfigurability and high energy efficiency in improving the propagation condition of channels. In this paper, we consider a large-sca
The Internet of Things (IoT) could enable the development of cloud multiple-input multiple-output (MIMO) systems where internet-enabled devices can work as distributed transmission/reception entities. We expect that spatial multiplexing with distribu
Channel estimation is very challenging when the receiver is equipped with a limited number of radio-frequency (RF) chains in beamspace millimeter-wave (mmWave) massive multiple-input and multiple-output systems. To solve this problem, we exploit a le