ﻻ يوجد ملخص باللغة العربية
The Internet of Things (IoT) could enable the development of cloud multiple-input multiple-output (MIMO) systems where internet-enabled devices can work as distributed transmission/reception entities. We expect that spatial multiplexing with distributed reception using cloud MIMO would be a key factor of future wireless communication systems. In this paper, we first review practical receivers for distributed reception of spatially multiplexed transmit data where the fusion center relies on quantized received signals conveyed from geographically separated receive nodes. Using the structures of these receivers, we propose practical channel estimation techniques for the block-fading scenario. The proposed channel estimation techniques rely on very simple operations at the received nodes while achieving near-optimal channel estimation performance as the training length becomes large.
The Internet of things (IoT) holds much commercial potential and could facilitate distributed multiple-input multiple-output (MIMO) communication in future systems. We study a distributed reception scenario in which a transmitter equipped with multip
Channel estimation is very challenging when the receiver is equipped with a limited number of radio-frequency (RF) chains in beamspace millimeter-wave (mmWave) massive multiple-input and multiple-output systems. To solve this problem, we exploit a le
The problem of wideband massive MIMO channel estimation is considered. Targeting for low complexity algorithms as well as small training overhead, a compressive sensing (CS) approach is pursued. Unfortunately, due to the Kronecker-type sensing (measu
We consider the problem of channel estimation for uplink multiuser massive MIMO systems, where, in order to significantly reduce the hardware cost and power consumption, one-bit analog-to-digital converters (ADCs) are used at the base station (BS) to
In this paper, we address the message-passing receiver design for the 3D massive MIMO-OFDM systems. With the aid of the central limit argument and Taylor-series approximation, a computationally efficient receiver that performs joint channel estimatio