ﻻ يوجد ملخص باللغة العربية
We develop a risk-averse safety analysis method for stochastic systems on discrete infinite time horizons. Our method quantifies the notion of risk for a control system in terms of the severity of a harmful random outcome in a fraction of worst cases, whereas classical methods quantify risk in terms of probabilities. The theoretical arguments are based on the analysis of a value iteration algorithm on an augmented state space. We provide conditions to guarantee the existence of an optimal policy on this space. We illustrate the method numerically using an example from the domain of stormwater management.
Given a stochastic dynamical system modelled via stochastic differential equations (SDEs), we evaluate the safety of the system through characterisations of its exit time moments. We lift the (possibly nonlinear) dynamics into the space of the occupa
Model-based fault injection methods are widely used for the evaluation of fault tolerance in safety-critical control systems. In this paper, we introduce a new model-based fault injection method implemented as a highlycustomizable Simulink block call
Stability and safety are two important aspects in safety-critical control of dynamical systems. It has been a well established fact in control theory that stability properties can be characterized by Lyapunov functions. Reachability properties can al
Risk-sensitive safety analysis is a safety analysis method for stochastic systems on Borel spaces that uses a risk functional from finance called Conditional Value-at-Risk (CVaR). CVaR provides a particularly expressive way to quantify the safety of
We study a linear-quadratic, optimal control problem on a discrete, finite time horizon with distributional ambiguity, in which the cost is assessed via Conditional Value-at-Risk (CVaR). We take steps toward deriving a scalable dynamic programming ap