ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning to Automatically Diagnose Multiple Diseases in Pediatric Chest Radiographs Using Deep Convolutional Neural Networks

108   0   0.0 ( 0 )
 نشر من قبل Huy Hieu Pham
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Chest radiograph (CXR) interpretation in pediatric patients is error-prone and requires a high level of understanding of radiologic expertise. Recently, deep convolutional neural networks (D-CNNs) have shown remarkable performance in interpreting CXR in adults. However, there is a lack of evidence indicating that D-CNNs can recognize accurately multiple lung pathologies from pediatric CXR scans. In particular, the development of diagnostic models for the detection of pediatric chest diseases faces significant challenges such as (i) lack of physician-annotated datasets and (ii) class imbalance problems. In this paper, we retrospectively collect a large dataset of 5,017 pediatric CXR scans, for which each is manually labeled by an experienced radiologist for the presence of 10 common pathologies. A D-CNN model is then trained on 3,550 annotated scans to classify multiple pediatric lung pathologies automatically. To address the high-class imbalance issue, we propose to modify and apply Distribution-Balanced loss for training D-CNNs which reshapes the standard Binary-Cross Entropy loss (BCE) to efficiently learn harder samples by down-weighting the loss assigned to the majority classes. On an independent test set of 777 studies, the proposed approach yields an area under the receiver operating characteristic (AUC) of 0.709 (95% CI, 0.690-0.729). The sensitivity, specificity, and F1-score at the cutoff value are 0.722 (0.694-0.750), 0.579 (0.563-0.595), and 0.389 (0.373-0.405), respectively. These results significantly outperform previous state-of-the-art methods on most of the target diseases. Moreover, our ablation studies validate the effectiveness of the proposed loss function compared to other standard losses, e.g., BCE and Focal Loss, for this learning task. Overall, we demonstrate the potential of D-CNNs in interpreting pediatric CXRs.



قيم البحث

اقرأ أيضاً

Chest radiography (CXR) is the most widely-used thoracic clinical imaging modality and is crucial for guiding the management of cardiothoracic conditions. The detection of specific CXR findings has been the main focus of several artificial intelligen ce (AI) systems. However, the wide range of possible CXR abnormalities makes it impractical to build specific systems to detect every possible condition. In this work, we developed and evaluated an AI system to classify CXRs as normal or abnormal. For development, we used a de-identified dataset of 248,445 patients from a multi-city hospital network in India. To assess generalizability, we evaluated our system using 6 international datasets from India, China, and the United States. Of these datasets, 4 focused on diseases that the AI was not trained to detect: 2 datasets with tuberculosis and 2 datasets with coronavirus disease 2019. Our results suggest that the AI system generalizes to new patient populations and abnormalities. In a simulated workflow where the AI system prioritized abnormal cases, the turnaround time for abnormal cases reduced by 7-28%. These results represent an important step towards evaluating whether AI can be safely used to flag cases in a general setting where previously unseen abnormalities exist.
Purpose: To develop a machine learning model to classify the severity grades of pulmonary edema on chest radiographs. Materials and Methods: In this retrospective study, 369,071 chest radiographs and associated radiology reports from 64,581 (mean a ge, 51.71; 54.51% women) patients from the MIMIC-CXR chest radiograph dataset were included. This dataset was split into patients with and without congestive heart failure (CHF). Pulmonary edema severity labels from the associated radiology reports were extracted from patients with CHF as four different ordinal levels: 0, no edema; 1, vascular congestion; 2, interstitial edema; and 3, alveolar edema. Deep learning models were developed using two approaches: a semi-supervised model using a variational autoencoder and a pre-trained supervised learning model using a dense neural network. Receiver operating characteristic curve analysis was performed on both models. Results: The area under the receiver operating characteristic curve (AUC) for differentiating alveolar edema from no edema was 0.99 for the semi-supervised model and 0.87 for the pre-trained models. Performance of the algorithm was inversely related to the difficulty in categorizing milder states of pulmonary edema (shown as AUCs for semi-supervised model and pre-trained model, respectively): 2 versus 0, 0.88 and 0.81; 1 versus 0, 0.79 and 0.66; 3 versus 1, 0.93 and 0.82; 2 versus 1, 0.69 and 0.73; and, 3 versus 2, 0.88 and 0.63. Conclusion: Deep learning models were trained on a large chest radiograph dataset and could grade the severity of pulmonary edema on chest radiographs with high performance.
Knee osteoarthritis (OA) is the most common musculoskeletal disease in the world. In primary healthcare, knee OA is diagnosed using clinical examination and radiographic assessment. Osteoarthritis Research Society International (OARSI) atlas of OA ra diographic features allows to perform independent assessment of knee osteophytes, joint space narrowing and other knee features. This provides a fine-grained OA severity assessment of the knee, compared to the gold standard and most commonly used Kellgren-Lawrence (KL) composite score. However, both OARSI and KL grading systems suffer from moderate inter-rater agreement, and therefore, the use of computer-aided methods could help to improve the reliability of the process. In this study, we developed a robust, automatic method to simultaneously predict KL and OARSI grades in knee radiographs. Our method is based on Deep Learning and leverages an ensemble of deep residual networks with 50 layers, squeeze-excitation and ResNeXt blocks. Here, we used transfer learning from ImageNet with a fine-tuning on the whole Osteoarthritis Initiative (OAI) dataset. An independent testing of our model was performed on the whole Multicenter Osteoarthritis Study (MOST) dataset. Our multi-task method yielded Cohens kappa coefficients of 0.82 for KL-grade and 0.79, 0.84, 0.94, 0.83, 0.84, 0.90 for femoral osteophytes, tibial osteophytes and joint space narrowing for lateral and medial compartments respectively. Furthermore, our method yielded area under the ROC curve of 0.98 and average precision of 0.98 for detecting the presence of radiographic OA (KL $geq 2$), which is better than the current state-of-the-art.
Pneumonia is a life-threatening disease, which occurs in the lungs caused by either bacterial or viral infection. It can be life-endangering if not acted upon in the right time and thus an early diagnosis of pneumonia is vital. The aim of this paper is to automatically detect bacterial and viral pneumonia using digital x-ray images. It provides a detailed report on advances made in making accurate detection of pneumonia and then presents the methodology adopted by the authors. Four different pre-trained deep Convolutional Neural Network (CNN)- AlexNet, ResNet18, DenseNet201, and SqueezeNet were used for transfer learning. 5247 Bacterial, viral and normal chest x-rays images underwent preprocessing techniques and the modified images were trained for the transfer learning based classification task. In this work, the authors have reported three schemes of classifications: normal vs pneumonia, bacterial vs viral pneumonia and normal, bacterial and viral pneumonia. The classification accuracy of normal and pneumonia images, bacterial and viral pneumonia images, and normal, bacterial and viral pneumonia were 98%, 95%, and 93.3% respectively. This is the highest accuracy in any scheme than the accuracies reported in the literature. Therefore, the proposed study can be useful in faster-diagnosing pneumonia by the radiologist and can help in the fast airport screening of pneumonia patients.
Dual-energy (DE) chest radiography provides the capability of selectively imaging two clinically relevant materials, namely soft tissues, and osseous structures, to better characterize a wide variety of thoracic pathology and potentially improve diag nosis in posteroanterior (PA) chest radiographs. However, DE imaging requires specialized hardware and a higher radiation dose than conventional radiography, and motion artifacts sometimes happen due to involuntary patient motion. In this work, we learn the mapping between conventional radiographs and bone suppressed radiographs. Specifically, we propose to utilize two variations of generative adversarial networks (GANs) for image-to-image translation between conventional and bone suppressed radiographs obtained by DE imaging technique. We compare the effectiveness of training with patient-wisely paired and unpaired radiographs. Experiments show both training strategies yield radio-realistic radiographs with suppressed bony structures and few motion artifacts on a hold-out test set. While training with paired images yields slightly better performance than that of unpaired images when measuring with two objective image quality metrics, namely Structural Similarity Index (SSIM) and Peak Signal-to-Noise Ratio (PSNR), training with unpaired images demonstrates better generalization ability on unseen anteroposterior (AP) radiographs than paired training.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا