ﻻ يوجد ملخص باللغة العربية
The Nielsen-Ninomiya Theorem has set up a ground rule for the minimal number of the topological points in a Brillouin zone. Notably, in the 2D Brillouin zone, chiral symmetry and space-time inversion symmetry can properly define topological invariants as charges characterizing the stability of the nodal points so that the non-zero charges protect these points. Due to the charge neutralization, the Nielsen-Ninomiya Theorem requires at least two stable topological points in the entire Brillouin zone. However, additional crystalline symmetries might duplicate the points. In this regard, for the wallpaper groups with crystalline symmetries, the minimal number of the nodal points in the Brillouin zone might be more than two. In this work, we determine the minimal numbers of the nodal points for the wallpaper groups in chiral-symmetric and space-time-inversion-symmetric systems separately and provide examples for new topological materials, such as topological nodal time-reversal-symmetric superconductors and Dirac semimetals. This generalized Nielsen-Ninomiya Theorem serves as a guide to search for 2D topological nodal materials. Furthermore, we show the Nielsen-Ninomiya Theorem can be extended to 2D non-Hermitian systems hosting topologically protected exceptional points and Fermi points for the 17 wallpaper groups.
We identify four types of higher-order topological semimetals or nodal superconductors (HOTS), hosting (i) flat zero-energy Fermi arcs at crystal hinges, (ii) flat zero-energy hinge arcs coexisting with surface Dirac cones, (iii) chiral or helical hi
We propose a platform to realize nodal topological superconductors in a superconducting monolayer of MoX$_2$ (X$=$S, Se, Te) using an in-plane magnetic field. The bulk nodal points appear where the spin splitting due to spin-orbit coupling vanishes n
In this article we study 3D non-Hermitian higher-order Dirac semimetals (NHHODSMs). Our focus is on $C_4$-symmetric non-Hermitian systems where we investigate inversion ($mathcal{I}$) or time-reversal ($mathcal{T}$) symmetric models of NHHODSMs havin
Superconducting Weyl semimetals present a novel and promising system to harbor new forms of unconventional topological superconductivity. Within the context of time-reversal symmetric Weyl semimetals with $d$-wave superconductivity, we demonstrate th
We review the recent, mainly theoretical, progress in the study of topological nodal line semimetals in three dimensions. In these semimetals, the conduction and the valence bands cross each other along a one-dimensional curve in the three-dimensiona