ﻻ يوجد ملخص باللغة العربية
In this article we study 3D non-Hermitian higher-order Dirac semimetals (NHHODSMs). Our focus is on $C_4$-symmetric non-Hermitian systems where we investigate inversion ($mathcal{I}$) or time-reversal ($mathcal{T}$) symmetric models of NHHODSMs having real bulk spectra. We show that they exhibit the striking property that the bulk and surfaces are anti-PT and PT symmetric, respectively, and so belong to two different topological classes realizing a novel non-Hermitian topological phase which we call a emph{hybrid-PT topological phases}. Interestingly, while the bulk spectrum is still fully real, we find that exceptional Fermi-rings (EFRs) appear connecting the two Dirac nodes on the surface. This provides a route to probe and utilize both the bulk Dirac physics and exceptional rings/points on equal footing. Moreover, particularly for $mathcal{T}$-NHHODSMs, we also find real hinge-arcs connecting the surface EFRs. We show that this higher-order topology can be characterized using a biorthogonal real-space formula of the quadrupole moment. Furthermore, by applying Hermitian $C_4$-symmetric perturbations, we discover various novel phases, particularly: (i) an intrinsic $mathcal{I}$-NHHODSM having hinge arcs and gapped surfaces, and (ii) a novel $mathcal{T}$-symmetric skin-topological HODSM which possesses both topological and skin hinge modes. The interplay between non-Hermition and higher-order topology in this work paves the way toward uncovering rich phenomena and hybrid functionality that can be readily realized in experiment.
We study non-Hermitian higher-order Weyl semimetals (NHHOWSMs) possessing real spectra and having inversion $mathcal{I}$ ($mathcal{I}$-NHHOWSM) or time-reversal symmetry $mathcal{T}$ ($mathcal{T}$-NHHOWSM). When the reality of bulk spectra is lost, t
We investigate higher-order Weyl semimetals (HOWSMs) having bulk Weyl nodes attached to both surface and hinge Fermi arcs. We identify a new type of Weyl node, that we dub a $2nd$ order Weyl node, that can be identified as a transition in momentum sp
Dirac and Weyl semimetals both exhibit arc-like surface states. However, whereas the surface Fermi arcs in Weyl semimetals are topological consequences of the Weyl points themselves, the surface Fermi arcs in Dirac semimetals are not directly related
Three-dimensional topological (crystalline) insulators are materials with an insulating bulk, but conducting surface states which are topologically protected by time-reversal (or spatial) symmetries. Here, we extend the notion of three-dimensional to
Within a Kubo formalism, we study dc transport and ac optical properties of 3D Dirac and Weyl semimetals. Emphasis is placed on the approach to charge neutrality and on the differences between Dirac and Weyl materials. At charge neutrality, the zero-