ترغب بنشر مسار تعليمي؟ اضغط هنا

Cayley Graphs of Semigroups Applied to Atom Tracking in Chemistry

62   0   0.0 ( 0 )
 نشر من قبل Daniel Merkle
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

While atom tracking with isotope-labeled compounds is an essential and sophisticated wet-lab tool in order to, e.g., illuminate reaction mechanisms, there exists only a limited amount of formal methods to approach the problem. Specifically when large (bio-)chemical networks are considered where reactions are stereo-specific, rigorous techniques are inevitable. We present an approach using the right Cayley graph of a monoid in order to track atoms concurrently through sequences of reactions and predict their potential location in product molecules. This can not only be used to systematically build hypothesis or reject reaction mechanisms (we will use the ANRORC mechanism Addition of the Nucleophile, Ring Opening, and Ring Closure as an example), but also to infer naturally occurring subsystems of (bio-)chemical systems. Our results include the analysis of the carbon traces within the TCA cycle and infer subsystems based on projections of the right Cayley graph onto a set of relevant atoms.

قيم البحث

اقرأ أيضاً

We show that any connected Cayley graph $Gamma$ on an Abelian group of order $2n$ and degree $tilde{Omega}(log n)$ has at most $2^{n+1}(1 + o(1))$ independent sets. This bound is tight up to to the $o(1)$ term when $Gamma$ is bipartite. Our proof is based on Sapozhenkos graph container method and uses the Pl{u}nnecke-Rusza-Petridis inequality from additive combinatorics.
Let $G$ be a finite, undirected $d$-regular graph and $A(G)$ its normalized adjacency matrix, with eigenvalues $1 = lambda_1(A)geq dots ge lambda_n ge -1$. It is a classical fact that $lambda_n = -1$ if and only if $G$ is bipartite. Our main result p rovides a quantitative separation of $lambda_n$ from $-1$ in the case of Cayley graphs, in terms of their expansion. Denoting $h_{out}$ by the (outer boundary) vertex expansion of $G$, we show that if $G$ is a non-bipartite Cayley graph (constructed using a group and a symmetric generating set of size $d$) then $lambda_n ge -1 + ch_{out}^2/d^2,,$ for $c$ an absolute constant. We exhibit graphs for which this result is tight up to a factor depending on $d$. This improves upon a recent result by Biswas and Saha who showed $lambda_n ge -1 + h_{out}^4/(2^9d^8),.$ We also note that such a result could not be true for general non-bipartite graphs.
Many biological networks have been labelled scale-free as their degree distribution can be approximately described by a powerlaw distribution. While the degree distribution does not summarize all aspects of a network it has often been suggested that its functional form contains important clues as to underlying evolutionary processes that have shaped the network. Generally determining the appropriate functional form for the degree distribution has been fitted in an ad-hoc fashion. Here we apply formal statistical model selection methods to determine which functional form best describes degree distributions of protein interaction and metabolic networks. We interpret the degree distribution as belonging to a class of probability models and determine which of these models provides the best description for the empirical data using maximum likelihood inference, composite likelihood methods, the Akaike information criterion and goodness-of-fit tests. The whole data is used in order to determine the parameter that best explains the data under a given model (e.g. scale-free or random graph). As we will show, present protein interaction and metabolic network data from different organisms suggests that simple scale-free models do not provide an adequate description of real network data.
A Cayley graph over a group G is said to be central if its connection set is a normal subset of G. It is proved that for any two central Cayley graphs over explicitly given almost simple groups of order n, the set of all isomorphisms from the first graph onto the second can be found in time poly(n).
In this perspective article, we present a multidisciplinary approach for characterizing protein structure networks. We first place our approach in its historical context and describe the manner in which it synthesizes concepts from quantum chemistry, biology of polymer conformations, matrix mathematics, and percolation theory. We then explicitly provide the method for constructing the protein structure network in terms of non-covalently interacting amino acid side chains and show how a mine of information can be obtained from the graph spectra of these networks. Employing suitable mathematical approaches, such as the use of a weighted, Laplacian matrix to generate the spectra, enables us to develop rigorous methods for network comparison and to identify crucial nodes responsible for the network integrity through a perturbation approach. Our scoring methods have several applications in structural biology that are elusive to conventional methods of analyses. Here, we discuss the instances of: (a) Protein structure comparison that include the details of side chain connectivity, (b) The contribution to node clustering as a function of bound ligand, explaining the global effect of local changes in phenomena such as allostery and (c) The identification of crucial amino acids for structural integrity, derived purely from the spectra of the graph. We demonstrate how our method enables us to obtain valuable information on key proteins involved in cellular functions and diseases such as GPCR and HIV protease, and discuss the biological implications. We then briefly describe how concepts from percolation theory further augment our analyses. In our concluding perspective for future developments, we suggest a further unifying approach to protein structure analyses and a judicious choice of questions to employ our methods for larger, more complex networks, such as metabolic and disease networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا