ﻻ يوجد ملخص باللغة العربية
In this perspective article, we present a multidisciplinary approach for characterizing protein structure networks. We first place our approach in its historical context and describe the manner in which it synthesizes concepts from quantum chemistry, biology of polymer conformations, matrix mathematics, and percolation theory. We then explicitly provide the method for constructing the protein structure network in terms of non-covalently interacting amino acid side chains and show how a mine of information can be obtained from the graph spectra of these networks. Employing suitable mathematical approaches, such as the use of a weighted, Laplacian matrix to generate the spectra, enables us to develop rigorous methods for network comparison and to identify crucial nodes responsible for the network integrity through a perturbation approach. Our scoring methods have several applications in structural biology that are elusive to conventional methods of analyses. Here, we discuss the instances of: (a) Protein structure comparison that include the details of side chain connectivity, (b) The contribution to node clustering as a function of bound ligand, explaining the global effect of local changes in phenomena such as allostery and (c) The identification of crucial amino acids for structural integrity, derived purely from the spectra of the graph. We demonstrate how our method enables us to obtain valuable information on key proteins involved in cellular functions and diseases such as GPCR and HIV protease, and discuss the biological implications. We then briefly describe how concepts from percolation theory further augment our analyses. In our concluding perspective for future developments, we suggest a further unifying approach to protein structure analyses and a judicious choice of questions to employ our methods for larger, more complex networks, such as metabolic and disease networks.
Many unicellular organisms allocate their key proteins asymmetrically between the mother and daughter cells, especially in a stressed environment. A recent theoretical model is able to predict when the asymmetry in segregation of key proteins enhance
We study a statistical model describing the steady state distribution of the fluxes in a metabolic network. The resulting model on continuous variables can be solved by the cavity method. In particular analytical tractability is possible solving the
Coarse-graining is a powerful tool for extending the reach of dynamic models of proteins and other biological macromolecules. Topological coarse-graining, in which biomolecules or sets thereof are represented via graph structures, is a particularly u
Synthetic biology aims at designing modular genetic circuits that can be assembled according to the desired function. When embedded in a cell, a circuit module becomes a small subnetwork within a larger environmental network, and its dynamics is ther
The common techniques to study protein-protein proximity in vivo are not well-adapted to the capabilities and the expertise of a standard proteomics laboratory, typically based on the use of mass spectrometry. With the aim of closing this gap, we hav