ﻻ يوجد ملخص باللغة العربية
Identifying the nature of dark matter (DM) has long been a pressing question for particle physics. In the face of ever-more-powerful exclusions and null results from large-exposure searches for TeV-scale DM interacting with nuclei, a significant amount of attention has shifted to lighter (sub-GeV) DM candidates. Direct detection of the light dark matter in our galaxy by observing DM scattering off a target system requires new approaches compared to prior searches. Lighter DM particles have less available kinetic energy, and achieving a kinematic match between DM and the target mandates the proper treatment of collective excitations in condensed matter systems, such as charged quasiparticles or phonons. In this context, the condensed matter physics of the target material is crucial, necessitating an interdisciplinary approach. In this review, we provide a self-contained introduction to direct detection of keV-GeV DM with condensed matter systems. We give a brief survey of dark matter models and basics of condensed matter, while the bulk of the review deals with the theoretical treatment of DM-nucleon and DM-electron interactions. We also review recent experimental developments in detector technology, and conclude with an outlook for the field of sub-GeV DM detection over the next decade.
Superconducting detectors have been proposed as outstanding targets for the direct detection of light dark matter scattering at masses as low as a keV. We study the prospects for directional detection of dark matter in isotropic superconducting targe
We discuss a possible principle for detecting dark matter axions in galactic halos. If axions constitute a condensate in the Milky Way, stimulated emissions of the axions from a type of excitation in condensed matter can be detectable. We provide gen
We propose the use of silicon carbide (SiC) for direct detection of sub-GeV dark matter. SiC has properties similar to both silicon and diamond, but has two key advantages: (i) it is a polar semiconductor which allows sensitivity to a broader range o
The recent measurements of the cosmological parameter $H_0$ from the direct local observations and the inferred value from the Cosmic Microwave Background show $sim 4 sigma$ discrepancy. This may indicate new physics beyond the standard $Lambda$CDM.
Many existing and proposed experiments targeting QCD axion dark matter (DM) can also search for a broad class of axion-like particles (ALPs). We analyze the experimental sensitivities to electromagnetically-coupled ALP DM in different cosmological sc