ﻻ يوجد ملخص باللغة العربية
We propose the use of silicon carbide (SiC) for direct detection of sub-GeV dark matter. SiC has properties similar to both silicon and diamond, but has two key advantages: (i) it is a polar semiconductor which allows sensitivity to a broader range of dark matter candidates; and (ii) it exists in many stable polymorphs with varying physical properties, and hence has tunable sensitivity to various dark matter models. We show that SiC is an excellent target to search for electron, nuclear and phonon excitations from scattering of dark matter down to 10 keV in mass, as well as for absorption processes of dark matter down to 10 meV in mass. Combined with its widespread use as an alternative to silicon in other detector technologies and its availability compared to diamond, our results demonstrate that SiC holds much promise as a novel dark matter detector.
We study the phenomenology and detection prospects of a sub-GeV Dirac dark matter candidate with resonantly enhanced annihilations via a dark photon mediator. The model evades cosmological constraints on light thermal particles in the early universe
Traditional direct searches for dark matter, looking for nuclear recoils in deep underground detectors, are challenged by an almost complete loss of sensitivity for light dark matter particles. Consequently, there is a significant effort in the commu
Identifying the nature of dark matter (DM) has long been a pressing question for particle physics. In the face of ever-more-powerful exclusions and null results from large-exposure searches for TeV-scale DM interacting with nuclei, a significant amou
Superconducting detectors have been proposed as outstanding targets for the direct detection of light dark matter scattering at masses as low as a keV. We study the prospects for directional detection of dark matter in isotropic superconducting targe
Collective excitations in condensed matter systems, such as phonons and magnons, have recently been proposed as novel detection channels for light dark matter. We show that excitation of i) optical phonon polaritons in polar materials in an ${mathcal