ﻻ يوجد ملخص باللغة العربية
The quantum spin liquid candidate NaYbSe$_2$ was recently reported to exhibit a Mott transition under pressure. Superconductivity was observed in the high-pressure metallic phase, raising the question concerning its relation with the low-pressure quantum spin liquid ground state. Here we combine the density functional theory and the dynamical mean-field theory to explore the underlying mechanism of the insulator-to-metal transition and superconductivity and establish an overall picture of its electronic phases under pressure. Our results suggest that NaYbSe$_2$ is a charge-transfer insulator at ambient pressure. Upon increasing pressure, however, the system first enters a semi-metallic state with incoherent Kondo scattering against coexisting localized Yb-$4f$ moments, and then turns into a heavy fermion metal. In between, there may exist a delocalization quantum critical point responsible for the observed non-Fermi liquid region with linear-in-$T$ resistivity. The insulator-to-metal transition is therefore a two-stage process. Superconductivity emerges in the heavy fermion phase with well-nested Yb-4$f$ Fermi surfaces, suggesting that spin fluctuations may play a role in the Cooper pairing. NaYbSe$_2$ might therefore be the 3rd Yb-based heavy-fermion superconductor with a very high $T_c$ than most heavy fermion superconductors.
The Mott transition is one of the fundamental issues in condensed matter physics, especially in the system with antiferromagnetic long-range order. However the Mott transition in quantum spin liquid (QSL) systems without long-range order is rare. Her
We have studied the effect of pressure on the pyrochlore iridate Eu$_2$Ir$_2$O$_7$, which at ambient pressure has a thermally driven insulator to metal transition at $T_{MI}sim120$,K. As a function of pressure the insulating gap closes, apparently co
This article reviews recent results of magnetotransport and magnetization measurements performed on highly oriented pyrolitic graphite (HOPG) and single crystalline Kish graphite samples. Both metal-insulator and insulator-metal transitions driven by
We investigate a two-orbital model for iron-based superconductors to elucidate the effect of interplay between electron correlation and Jahn-Teller electron-phonon coupling by using the dynamical mean-field theory combined with the exact diagonalizat
The 5d-transition metal pyrochlore oxide Cd2Re2O7, which was recently suggested to be a prototype of the spin-orbit-coupled metal [Phys. Rev. Lett. 115, 026401 (2015)], exhibits an inversion-symmetry breaking (ISB) transition at 200 K and a subsequen