ﻻ يوجد ملخص باللغة العربية
Quantum confinenement and manipulation of charge carriers are critical for achieving devices practical for quantum technologies. The interplay between electron spin and valley, as well as the possibility to address their quantum states electrically and optically, make two-dimensional (2D) transition metal dichalcogenides an emerging platform for the development of quantum devices. In this work, we fabricate devices based on heterostructures of layered 2D materials, in which we realize gate-controlled tungsten diselenide (WSe2) hole quantum dots. We discuss the observed mesoscopic transport features related to the emergence of quantum dots in the WSe2 device channel, and we compare them to a theoretical model.
Superconductors and semiconductors are crucial platforms in the field of quantum computing. They can be combined to hybrids, bringing together physical properties that enable the discovery of new emergent phenomena and provide novel strategies for qu
We report the fabrication and characterization of gate-defined hole quantum dots in monolayer and bilayer WSe$_2$. The devices were operated with gates above and below the WSe$_2$ layer to accumulate a hole gas, which for some devices was then select
A hallmark of wave-matter duality is the emergence of quantum-interference phenomena when an electronic transition follows different trajectories. Such interference results in asymmetric absorption lines such as Fano resonances, and gives rise to sec
We experimentally demonstrate time-resolved exciton propagation in a monolayer semiconductor at cryogenic temperatures. Monitoring phonon-assisted recombination of dark states, we find a highly unusual case of exciton diffusion. While at 5 K the diff
We consider electrostatically coupled quantum dots in topological insulators, otherwise confined and gapped by a magnetic texture. By numerically solving the (2+1) Dirac equation for the wave packet dynamics, we extract the energy spectrum of the cou