ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonclassical Exciton Diffusion in Monolayer WSe2

94   0   0.0 ( 0 )
 نشر من قبل Alexey Chernikov
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We experimentally demonstrate time-resolved exciton propagation in a monolayer semiconductor at cryogenic temperatures. Monitoring phonon-assisted recombination of dark states, we find a highly unusual case of exciton diffusion. While at 5 K the diffusivity is intrinsically limited by acoustic phonon scattering, we observe a pronounced decrease of the diffusion coefficient with increasing temperature, far below the activation threshold of higher-energy phonon modes. This behavior corresponds neither to well-known regimes of semiclassical free-particle transport nor to the thermally activated hopping in systems with strong localization. Its origin is discussed in the framework of both microscopic numerical and semi-phenomenological analytical models illustrating the observed characteristics of nonclassical propagation. Challenging the established description of mobile excitons in monolayer semiconductors, these results open up avenues to study quantum transport phenomena for excitonic quasiparticles in atomically-thin van der Waals materials and their heterostructures.



قيم البحث

اقرأ أيضاً

Moire superlattices in van der Waals heterostructures have emerged as a powerful tool for engineering novel quantum phenomena. Here we report the observation of a correlated interlayer exciton insulator in a double-layer heterostructure composed of a WSe2 monolayer and a WS2/WSe2 moire bilayer that are separated by an ultrathin hexagonal boron nitride (hBN). The moire WS2/WSe2 bilayer features a Mott insulator state at hole density p/p0 = 1, where p0 corresponds to one hole per moire lattice site. When electrons are added to the Mott insulator in the WS2/WSe2 moire bilayer and an equal number of holes are injected into the WSe2 monolayer, a new interlayer exciton insulator emerges with the holes in the WSe2 monolayer and the electrons in the doped Mott insulator bound together through interlayer Coulomb interactions. The excitonic insulator is stable up to a critical hole density of ~ 0.5p0 in the WSe2 monolayer, beyond which the system becomes metallic. Our study highlights the opportunities for realizing novel quantum phases in double-layer moire systems due to the interplay between the moire flat band and strong interlayer electron interactions.
Tungsten-based monolayer transition metal dichalcogenides host a long-lived dark exciton, an electron-hole pair in a spin-triplet configuration. The long lifetime and unique spin properties of the dark exciton provide exciting opportunities to explor e light-matter interactions beyond electric dipole transitions. Here we demonstrate that the coupling of the dark exciton and an optically silent chiral phonon enables the intrinsic photoluminescence of the dark-exciton replica in monolayer WSe2. Gate and magnetic-field dependent PL measurements unveil a circularly-polarized replica peak located below the dark exciton by 21.6 meV, equal to E phonon energy from Se vibrations. First-principles calculations show that the exciton-phonon interaction selectively couples the spin-forbidden dark exciton to the intravalley spin-allowed bright exciton, permitting the simultaneous emission of a chiral phonon and a circularly-polarized photon. Our discovery and understanding of the phonon replica reveals a chirality dictated emission channel of the phonons and photons, unveiling a new route of manipulating valley-spin.
Tightly bound excitons in monolayer semiconductors represent a versatile platform to study two-dimensional propagation of neutral quasiparticles. Their intrinsic properties, however, can be severely obscured by spatial energy fluctuations due to a hi gh sensitivity to the immediate environment. Here, we take advantage of the encapsulation of individual layers in hexagonal boron nitride to strongly suppress environmental disorder. Diffusion of excitons is then directly monitored using time- and spatially-resolved emission microscopy at ambient conditions. We consistently find very efficient propagation with linear diffusion coefficients up to 10,cm$^2$/s, corresponding to room temperature effective mobilities as high as 400,cm$^2$/Vs as well as a correlation between rapid diffusion and short population lifetime. At elevated densities we detect distinct signatures of many-particle interactions and consequences of strongly suppressed Auger-like exciton-exciton annihilation. A combination of analytical and numerical theoretical approaches is employed to provide pathways towards comprehensive understanding of the observed linear and non-linear propagation phenomena. We emphasize the role of dark exciton states and present a mechanism for diffusion facilitated by free electron hole plasma from entropy-ionized excitons.
We directly monitor exciton propagation in freestanding and SiO2-supported WS2 monolayers through spatially- and time-resolved micro-photoluminescence under ambient conditions. We find highly nonlinear behavior with characteristic, qualitative change s in the spatial profiles of the exciton emission and an effective diffusion coefficient increasing from 0.3 to more than 30 cm2/s, depending on the injected exciton density. Solving the diffusion equation while accounting for Auger recombination allows us to identify and quantitatively understand the main origin of the increase in the observed diffusion coefficient. At elevated excitation densities, the initial Gaussian distribution of the excitons evolves into long-lived halo shapes with micrometer-scale diameter, indicating additional memory effects in the exciton dynamics.
69 - M. Krol , K. Lekenta , R. Mirek 2018
Monolayer transition metal dichalcogenides, known for exhibiting strong excitonic resonances, constitute a very interesting and versatile platform for investigation of light-matter interactions. In this work we report on a strong coupling regime betw een excitons in monolayer WSe2 and photons confined in an open, voltage-tunable dielectric microcavity. The tunability of our system allows us to extend the exciton-polariton state over a wide energy range and, in particular, to bring the excitonic component of the lower polariton mode into resonance with other excitonic transitions in monolayer WSe2. With selective excitation of spin-polarized exciton-polaritons we demonstrate the valley polarization when the polaritons from the lower branch come into resonance with a bright trion state in monolayer WSe2 and valley depolarization when they are in resonance with a dark trion state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا