ﻻ يوجد ملخص باللغة العربية
Text style transfer aims to alter the style (e.g., sentiment) of a sentence while preserving its content. A common approach is to map a given sentence to content representation that is free of style, and the content representation is fed to a decoder with a target style. Previous methods in filtering style completely remove tokens with style at the token level, which incurs the loss of content information. In this paper, we propose to enhance content preservation by implicitly removing the style information of each token with reverse attention, and thereby retain the content. Furthermore, we fuse content information when building the target style representation, making it dynamic with respect to the content. Our method creates not only style-independent content representation, but also content-dependent style representation in transferring style. Empirical results show that our method outperforms the state-of-the-art baselines by a large margin in terms of content preservation. In addition, it is also competitive in terms of style transfer accuracy and fluency.
Text style transfer aims to modify the style of a sentence while keeping its content unchanged. Recent style transfer systems often fail to faithfully preserve the content after changing the style. This paper proposes a structured content preserving
Style transfer deals with the algorithms to transfer the stylistic properties of a piece of text into that of another while ensuring that the core content is preserved. There has been a lot of interest in the field of text style transfer due to its w
Text style transfer (TST) is an important task in natural language generation (NLG), which aims to control certain attributes in the generated text, such as politeness, emotion, humor, and many others. It has a long history in the field of natural la
One of the most challenging topics in Natural Language Processing (NLP) is visually-grounded language understanding and reasoning. Outdoor vision-and-language navigation (VLN) is such a task where an agent follows natural language instructions and na
The dominant approach to unsupervised style transfer in text is based on the idea of learning a latent representation, which is independent of the attributes specifying its style. In this paper, we show that this condition is not necessary and is not