ﻻ يوجد ملخص باللغة العربية
As a vital problem in classification-oriented transfer, unsupervised domain adaptation (UDA) has attracted widespread attention in recent years. Previous UDA methods assume the marginal distributions of different domains are shifted while ignoring the discriminant information in the label distributions. This leads to classification performance degeneration in real applications. In this work, we focus on the conditional distribution shift problem which is of great concern to current conditional invariant models. We aim to seek a kernel covariance embedding for conditional distribution which remains yet unexplored. Theoretically, we propose the Conditional Kernel Bures (CKB) metric for characterizing conditional distribution discrepancy, and derive an empirical estimation for the CKB metric without introducing the implicit kernel feature map. It provides an interpretable approach to understand the knowledge transfer mechanism. The established consistency theory of the empirical estimation provides a theoretical guarantee for convergence. A conditional distribution matching network is proposed to learn the conditional invariant and discriminative features for UDA. Extensive experiments and analysis show the superiority of our proposed model.
Learning guarantees often rely on assumptions of i.i.d. data, which will likely be violated in practice once predictors are deployed to perform real-world tasks. Domain adaptation approaches thus appeared as a useful framework yielding extra flexibil
Generative Adversarial Networks (GANs) are performant generative methods yielding high-quality samples. However, under certain circumstances, the training of GANs can lead to mode collapse or mode dropping, i.e. the generative models not being able t
Domain adaptation (DA) aims to transfer discriminative features learned from source domain to target domain. Most of DA methods focus on enhancing feature transferability through domain-invariance learning. However, source-learned discriminability it
Advances in visual navigation methods have led to intelligent embodied navigation agents capable of learning meaningful representations from raw RGB images and perform a wide variety of tasks involving structural and semantic reasoning. However, most
Extensive Unsupervised Domain Adaptation (UDA) studies have shown great success in practice by learning transferable representations across a labeled source domain and an unlabeled target domain with deep models. However, previous works focus on impr