ترغب بنشر مسار تعليمي؟ اضغط هنا

Localization enhanced dissipation in the generalized Aubry-Andr{e}-Harper model coupled to Ohmic baths

70   0   0.0 ( 0 )
 نشر من قبل Hai-Tao Cui Dr.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, the non-Markovian dynamics of excitation in the generalized Aubry-Andr{e}-Harper model coupled with an Ohmic-type environment is discussed in detail by evaluating the survival probability and inverse participation ratio of the state of system. Contrary to the common belief that localization will preserve the information of the initial state in the system against dissipation into the environment, this study found that strong localization can enhance the dissipation of quantum information. Through a thorough examination, we show that the non-Markovianity induced by the memory effect of the environment was responsible for this behavior. Under this circumstance, the exchange of energy between the system and its environment may lead to interference in the reduced energy levels of the system, that are also responsible for the stability of the system. In term of strong localization, the difference between reduced energy levels will become large, to the degree that the environment cannot feed back enough energy into the system. As a result, the initial-state information will eventually dissipate. This explanation was verified herein by an increase of the coupling strength between the system and its environment, which greatly reduced the decaying of quantum information.



قيم البحث

اقرأ أيضاً

We investigate the nonequilibrium dynamics of the one-dimension Aubry-Andr{e}-Harper model with $p$-wave superconductivity by changing the potential strength with slow and sudden quench. Firstly, we study the slow quench dynamics from localized phase to critical phase by linearly decreasing the potential strength $V$. The localization length is finite and its scaling obeys the Kibble-Zurek mechanism. The results show that the second-order phase transition line shares the same critical exponent $z u$, giving the correlation length $ u=0.997$ and dynamical exponent $z=1.373$, which are different from the Aubry-Andr{e} model. Secondly, we also study the sudden quench dynamics between three different phases: localized phase, critical phase, and extended phase. In the limit of $V=0$ and $V=infty$, we analytically study the sudden quench dynamics via the Loschmidt echo. The results suggest that, if the initial state and the post-quench Hamiltonian are in different phases, the Loschmidt echo vanishes at some time intervals. Furthermore, we found that, if the initial value is in the critical phase, the direction of the quench is the same as one of the two limits mentioned before, and similar behaviors will occur.
134 - Fangli Liu , Somnath Ghosh , 2014
A generalization of the Aubry-Andre-Harper (AAH) model is developed, containing a tunable phase shift between on-site and off-diagonal modulations. A localization transition can be induced by varying just this phase, keeping all other model parameter s constant. The complete localization phase diagram is obtained. Unlike the original AAH model, the generalized model can exhibit a transition between topologically trivial bandstructures and topologically non-trivial bandstructures containing protected boundary states. These boundary states can be pumped across the system by adiabatic variations in the phase shift parameter. The model can also be used to demonstrate the phenomenon of adiabatic pumping breakdown due to localization.
Using synthetic lattices of laser-coupled atomic momentum modes, we experimentally realize a recently proposed family of nearest-neighbor tight-binding models having quasiperiodic site energy modulation that host an exact mobility edge protected by a duality symmetry. These one-dimensional tight-binding models can be viewed as a generalization of the well-known Aubry-Andr{e} (AA) model, with an energy-dependent self duality condition that constitutes an analytical mobility edge relation. By adiabatically preparing the lowest and highest energy eigenstates of this model system and performing microscopic measurements of their participation ratio, we track the evolution of the mobility edge as the energy-dependent density of states is modified by the models tuning parameter. Our results show strong deviations from single-particle predictions, consistent with attractive interactions causing both enhanced localization of the lowest energy state due to self-trapping and inhibited localization of the highest energy state due to screening. This study paves the way for quantitative studies of interaction effects on self duality induced mobility edges.
113 - Tong Liu , Pei Wang , Shu Chen 2017
Off-diagonal Aubry-Andr{e} (AA) model has recently attracted a great deal of attention as they provide condensed matter realization of topological phases. We numerically study a generalized off-diagonal AA model with p-wave superfluid pairing in the presence of both commensurate and incommensurate hopping modulations. The phase diagram as functions of the modulation strength of incommensurate hopping and the strength of the p-wave pairing is obtained by using the multifractal analysis. We show that with the appearance of the p-wave pairing, the system exhibits mobility-edge phases and critical phases with various number of topologically protected zero-energy modes. Predicted topological nature of these exotic phases can be realized in a cold atomic system of incommensurate bichromatic optical lattice with induced p-wave superfluid pairing by using a Raman laser in proximity to a molecular Bose-Einstein condensation.
We study the many-body localization (MBL) transition of Floquet eigenstates in a driven, interacting fermionic chain with an incommensurate Aubry-Andr{e} potential and a time-periodic hopping amplitude as a function of the drive frequency $omega_D$ u sing exact diagonalization (ED). We find that the nature of the Floquet eigenstates change from ergodic to Floquet-MBL with increasing frequency; moreover, for a significant range of intermediate $omega_D$, the Floquet eigenstates exhibit non-trivial fractal dimensions. We find a possible transition from the ergodic to this multifractal phase followed by a gradual crossover to the MBL phase as the drive frequency is increased. We also study the fermion auto-correlation function, entanglement entropy, normalized participation ratio (NPR), fermion transport and the inverse participation ratio (IPR) as a function of $omega_D$. We show that the auto-correlation, fermion transport and NPR displays qualitatively different characteristics (compared to their behavior in the ergodic and MBL regions) for the range of $omega_D$ which supports multifractal eigenstates. In contrast, the entanglement growth in this frequency range tend to have similar features as in the MBL regime; its rate of growth is controlled by $omega_D$. Our analysis thus indicates that the multifractal nature of Floquet-MBL eigenstates can be detected by studying auto-correlation function and fermionic transport of these driven chains. We support our numerical results with a semi-analytic expression of the Floquet Hamiltonian obtained using Floquet perturbation theory (FPT) and discuss possible experiments which can test our predictions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا