ﻻ يوجد ملخص باللغة العربية
Edge states of two-dimensional topological insulators are helical and single-particle backscattering is prohibited by time-reversal symmetry. In this work, we show that an isotropic exchange coupling of helical edge states (HES) to a spin 1/2 impurity subjected to a magnetic field results in characteristic backscattering current noise (BCN) as a function of bias voltage and tilt angle between the direction of the magnetic field and the quantization axis of the HES. In particular, we find transitions from sub-Poissonian (antibunching) to super-Poissonian (bunching) behavior as a direct consequence of the helicity of the edge state electrons. We use the method of full counting statistics within a master equation approach treating the exchange coupling between the spin-1/2 impurity and the HES perturbatively. We express the BCN via coincidence correlation functions of scattering processes between the HES which gives a precise interpretation of the Fano factor in terms of bunching and antibunching behavior of electron jump events. We also investigate the effect of electron-electron interactions in the HES in terms of the Tomonaga-Luttinger liquid theory.
We calculate the frequency-dependent shot noise in the edge states of a two-dimensional topological insulator coupled to a magnetic impurity with spin $S=1/2$ of arbitrary anisotropy. If the anisotropy is absent, the noise is purely thermal at low fr
This is the reply to the comment by I. S. Burmistrov, P. D. Kurilovich, and V. D. Kurilovich [arXiv:1903.047241] on our paper Noise in the helical edge channel anisotropically coupled to a local spin [JETP Lett. 108, 664 (2018), arXiv:1810.05831].
We study the conductance of a time-reversal symmetric helical electronic edge coupled antiferromagnetically to a magnetic impurity, employing analytical and numerical approaches. The impurity can reduce the perfect conductance $G_0$ of a noninteracti
Magnetic impurities with sufficient anisotropy could account for the observed strong deviation of the edge conductance of 2D topological insulators from the anticipated quantized value. In this work we consider such a helical edge coupled to dilute i
We study electronic transport across a helical edge state exposed to a uniform magnetic ({$vec B$}) field over a finite length. We show that this system exhibits Fabry-Perot type resonances in electronic transport. The intrinsic spin anisotropy of th