ترغب بنشر مسار تعليمي؟ اضغط هنا

Sub- to Super-Poissonian crossover of current noise in helical edge states coupled to a spin impurity in a magnetic field

62   0   0.0 ( 0 )
 نشر من قبل Patrik Recher
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Edge states of two-dimensional topological insulators are helical and single-particle backscattering is prohibited by time-reversal symmetry. In this work, we show that an isotropic exchange coupling of helical edge states (HES) to a spin 1/2 impurity subjected to a magnetic field results in characteristic backscattering current noise (BCN) as a function of bias voltage and tilt angle between the direction of the magnetic field and the quantization axis of the HES. In particular, we find transitions from sub-Poissonian (antibunching) to super-Poissonian (bunching) behavior as a direct consequence of the helicity of the edge state electrons. We use the method of full counting statistics within a master equation approach treating the exchange coupling between the spin-1/2 impurity and the HES perturbatively. We express the BCN via coincidence correlation functions of scattering processes between the HES which gives a precise interpretation of the Fano factor in terms of bunching and antibunching behavior of electron jump events. We also investigate the effect of electron-electron interactions in the HES in terms of the Tomonaga-Luttinger liquid theory.

قيم البحث

اقرأ أيضاً

95 - K. E. Nagaev , S. V. Remizov , 2018
We calculate the frequency-dependent shot noise in the edge states of a two-dimensional topological insulator coupled to a magnetic impurity with spin $S=1/2$ of arbitrary anisotropy. If the anisotropy is absent, the noise is purely thermal at low fr equencies, but tends to the Poissonian noise of the full current $I$ at high frequencies. If the interaction only flips the impurity spin but conserves those of electrons, the noise at high voltages $eVgg T$ is frequency-independent. Both the noise and the backscattering current $I_{bs}$ saturate at voltage-independent values. Finally, if the Hamiltonian contains all types of non-spin-conserving scattering, the noise at high voltages becomes frequency-dependent again. At low frequencies, its ratio to $2eI_{bs}$ is larger than 1 and may reach 2 in the limit $I_{bs}to 0$. At high frequencies it tends to 1.
55 - K. E. Nagaev , S. V. Remizov , 2019
This is the reply to the comment by I. S. Burmistrov, P. D. Kurilovich, and V. D. Kurilovich [arXiv:1903.047241] on our paper Noise in the helical edge channel anisotropically coupled to a local spin [JETP Lett. 108, 664 (2018), arXiv:1810.05831].
We study the conductance of a time-reversal symmetric helical electronic edge coupled antiferromagnetically to a magnetic impurity, employing analytical and numerical approaches. The impurity can reduce the perfect conductance $G_0$ of a noninteracti ng helical edge by generating a backscattered current. The backscattered steady-state current tends to vanish below the Kondo temperature $T_K$ for time-reversal symmetric setups. We show that the central role in maintaining the perfect conductance is played by a global $U(1)$ symmetry. This symmetry can be broken by an anisotropic exchange coupling of the helical modes to the local impurity. Such anisotropy, in general, dynamically vanishes during the renormalization group (RG) flow to the strong coupling limit at low-temperatures. The role of the anisotropic exchange coupling is further studied using the time-dependent Numerical Renormalization Group (TD-NRG) method, uniquely suitable for calculating out-of-equilibrium observables of strongly correlated setups. We investigate the role of finite bias voltage and temperature in cutting the RG flow before the isotropic strong-coupling fixed point is reached, extract the relevant energy scales and the manner in which the crossover from the weakly interacting regime to the strong-coupling backscattering-free screened regime is manifested. Most notably, we find that at low temperatures the conductance of the backscattering current follows a power-law behavior $Gsim (T/T_K)^2$, which we understand as a strong nonlinear effect due to time-reversal symmetry breaking by the finite-bias.
Magnetic impurities with sufficient anisotropy could account for the observed strong deviation of the edge conductance of 2D topological insulators from the anticipated quantized value. In this work we consider such a helical edge coupled to dilute i mpurities with an arbitrary spin $S$ and a general form of the exchange matrix. We calculate the backscattering current noise at finite frequencies as a function of the temperature and applied voltage bias. We find that in addition to the Lorentzian resonance at zero frequency, the backscattering current noise features Fano-type resonances at non-zero frequencies. The widths of the resonances are controlled by the spectrum of corresponding Korringa rates. At a fixed frequency the backscattering current noise has non-monotonic behaviour as a function of the bias voltage.
We study electronic transport across a helical edge state exposed to a uniform magnetic ({$vec B$}) field over a finite length. We show that this system exhibits Fabry-Perot type resonances in electronic transport. The intrinsic spin anisotropy of th e helical edge states allows us to tune these resonances by changing the direction of the {$vec B$} field while keeping its magnitude constant. This is in sharp contrast to the case of non-helical one dimensional electron gases with a parabolic dispersion, where similar resonances do appear in individual spin channels ($uparrow$ and $downarrow$) separately which, however, cannot be tuned by merely changing the direction of the {$vec B$} field. These resonances provide a unique way to probe the helical nature of the theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا