ﻻ يوجد ملخص باللغة العربية
We study the conductance of a time-reversal symmetric helical electronic edge coupled antiferromagnetically to a magnetic impurity, employing analytical and numerical approaches. The impurity can reduce the perfect conductance $G_0$ of a noninteracting helical edge by generating a backscattered current. The backscattered steady-state current tends to vanish below the Kondo temperature $T_K$ for time-reversal symmetric setups. We show that the central role in maintaining the perfect conductance is played by a global $U(1)$ symmetry. This symmetry can be broken by an anisotropic exchange coupling of the helical modes to the local impurity. Such anisotropy, in general, dynamically vanishes during the renormalization group (RG) flow to the strong coupling limit at low-temperatures. The role of the anisotropic exchange coupling is further studied using the time-dependent Numerical Renormalization Group (TD-NRG) method, uniquely suitable for calculating out-of-equilibrium observables of strongly correlated setups. We investigate the role of finite bias voltage and temperature in cutting the RG flow before the isotropic strong-coupling fixed point is reached, extract the relevant energy scales and the manner in which the crossover from the weakly interacting regime to the strong-coupling backscattering-free screened regime is manifested. Most notably, we find that at low temperatures the conductance of the backscattering current follows a power-law behavior $Gsim (T/T_K)^2$, which we understand as a strong nonlinear effect due to time-reversal symmetry breaking by the finite-bias.
Edge states of two-dimensional topological insulators are helical and single-particle backscattering is prohibited by time-reversal symmetry. In this work, we show that an isotropic exchange coupling of helical edge states (HES) to a spin 1/2 impurit
We use different numerical approaches to calculate the double occupancy and mag- netic susceptibility as a function of a bias voltage in an Anderson impurity model. Specifically, we compare results from the Matsubara-voltage quantum Monte-Carlo appro
We investigate the transport properties of Chern insulators following a quantum quench between topological and non-topological phases. Recent works have shown that this yields an excited state for which the Chern number is preserved under unitary evo
We study equilibrium and nonequilibrium properties of the single-impurity Anderson model with a power-law pseudogap in the density of states. In equilibrium, the model is known to display a quantum phase transition from a generalized Kondo to a local
We analyze the ground-state energy, local spin correlation, impurity spin polarization, impurity-induced magnetization, and corresponding zero-field susceptibilities of the symmetric single-impurity Kondo model on a tight-binding chain with bandwidth