ترغب بنشر مسار تعليمي؟ اضغط هنا

Classical Risk-Averse Control for Finite-Horizon Borel Models

131   0   0.0 ( 0 )
 نشر من قبل Margaret Chapman Dr.
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

We study a risk-averse optimal control problem with a finite-horizon Borel model, where the cost is assessed via exponential utility. The setting permits non-linear dynamics, non-quadratic costs, and continuous spaces but is less general than the problem of optimizing an expected utility. Our contribution is to show the existence of an optimal risk-averse controller through the use of measure-theoretic first principles.



قيم البحث

اقرأ أيضاً

We propose a learning-based, distributionally robust model predictive control approach towards the design of adaptive cruise control (ACC) systems. We model the preceding vehicle as an autonomous stochastic system, using a hybrid model with continuou s dynamics and discrete, Markovian inputs. We estimate the (unknown) transition probabilities of this model empirically using observed mode transitions and simultaneously determine sets of probability vectors (ambiguity sets) around these estimates, that contain the true transition probabilities with high confidence. We then solve a risk-averse optimal control problem that assumes the worst-case distributions in these sets. We furthermore derive a robust terminal constraint set and use it to establish recursive feasibility of the resulting MPC scheme. We validate the theoretical results and demonstrate desirable properties of the scheme through closed-loop simulations.
The standard approach to risk-averse control is to use the Exponential Utility (EU) functional, which has been studied for several decades. Like other risk-averse utility functionals, EU encodes risk aversion through an increasing convex mapping $var phi$ of objective costs to subjective costs. An objective cost is a realization $y$ of a random variable $Y$. In contrast, a subjective cost is a realization $varphi(y)$ of a random variable $varphi(Y)$ that has been transformed to measure preferences about the outcomes. For EU, the transformation is $varphi(y) = exp(frac{-theta}{2}y)$, and under certain conditions, the quantity $varphi^{-1}(E(varphi(Y)))$ can be approximated by a linear combination of the mean and variance of $Y$. More recently, there has been growing interest in risk-averse control using the Conditional Value-at-Risk (CVaR) functional. In contrast to the EU functional, the CVaR of a random variable $Y$ concerns a fraction of its possible realizations. If $Y$ is a continuous random variable with finite $E(|Y|)$, then the CVaR of $Y$ at level $alpha$ is the expectation of $Y$ in the $alpha cdot 100 %$ worst cases. Here, we study the applications of risk-averse functionals to controller synthesis and safety analysis through the development of numerical examples, with emphasis on EU and CVaR. Our contribution is to examine the decision-theoretic, mathematical, and computational trade-offs that arise when using EU and CVaR for optimal control and safety analysis. We are hopeful that this work will advance the interpretability and elucidate the potential benefits of risk-averse control technology.
Multistage risk-averse optimal control problems with nested conditional risk mappings are gaining popularity in various application domains. Risk-averse formulations interpolate between the classical expectation-based stochastic and minimax optimal c ontrol. This way, risk-averse problems aim at hedging against extreme low-probability events without being overly conservative. At the same time, risk-based constraints may be employed either as surrogates for chance (probabilistic) constraints or as a robustification of expectation-based constraints. Such multistage problems, however, have been identified as particularly hard to solve. We propose a decomposition method for such nested problems that allows us to solve them via efficient numerical optimization methods. Alongside, we propose a new form of risk constraints which accounts for the propagation of uncertainty in time.
We consider the stochastic shortest path planning problem in MDPs, i.e., the problem of designing policies that ensure reaching a goal state from a given initial state with minimum accrued cost. In order to account for rare but important realizations of the system, we consider a nested dynamic coherent risk total cost functional rather than the conventional risk-neutral total expected cost. Under some assumptions, we show that optimal, stationary, Markovian policies exist and can be found via a special Bellmans equation. We propose a computational technique based on difference convex programs (DCPs) to find the associated value functions and therefore the risk-averse policies. A rover navigation MDP is used to illustrate the proposed methodology with conditional-value-at-risk (CVaR) and entropic-value-at-risk (EVaR) coherent risk measures.
In this paper, we study multi-armed bandit problems in explore-then-commit setting. In our proposed explore-then-commit setting, the goal is to identify the best arm after a pure experimentation (exploration) phase and exploit it once or for a given finite number of times. We identify that although the arm with the highest expected reward is the most desirable objective for infinite exploitations, it is not necessarily the one that is most probable to have the highest reward in a single or finite-time exploitations. Alternatively, we advocate the idea of risk-aversion where the objective is to compete against the arm with the best risk-return trade-off. Then, we propose two algorithms whose objectives are to select the arm that is most probable to reward the most. Using a new notion of finite-time exploitation regret, we find an upper bound for the minimum number of experiments before commitment, to guarantee an upper bound for the regret. As compared to existing risk-averse bandit algorithms, our algorithms do not rely on hyper-parameters, resulting in a more robust behavior in practice, which is verified by the numerical evaluation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا