ﻻ يوجد ملخص باللغة العربية
Multistage risk-averse optimal control problems with nested conditional risk mappings are gaining popularity in various application domains. Risk-averse formulations interpolate between the classical expectation-based stochastic and minimax optimal control. This way, risk-averse problems aim at hedging against extreme low-probability events without being overly conservative. At the same time, risk-based constraints may be employed either as surrogates for chance (probabilistic) constraints or as a robustification of expectation-based constraints. Such multistage problems, however, have been identified as particularly hard to solve. We propose a decomposition method for such nested problems that allows us to solve them via efficient numerical optimization methods. Alongside, we propose a new form of risk constraints which accounts for the propagation of uncertainty in time.
Consider a multi-agent network comprised of risk averse social sensors and a controller that jointly seek to estimate an unknown state of nature, given noisy measurements. The network of social sensors perform Bayesian social learning - each sensor f
The multi-armed bandit (MAB) is a classical online optimization model for the trade-off between exploration and exploitation. The traditional MAB is concerned with finding the arm that minimizes the mean cost. However, minimizing the mean does not ta
We study a risk-averse optimal control problem with a finite-horizon Borel model, where the cost is assessed via exponential utility. The setting permits non-linear dynamics, non-quadratic costs, and continuous spaces but is less general than the pro
We consider the problem of designing policies for partially observable Markov decision processes (POMDPs) with dynamic coherent risk objectives. Synthesizing risk-averse optimal policies for POMDPs requires infinite memory and thus undecidable. To ov
The term rational has become synonymous with maximizing expected payoff in the definition of the best response in Nash setting. In this work, we consider stochastic games in which players engage only once, or at most a limited number of times. In suc