ترغب بنشر مسار تعليمي؟ اضغط هنا

Bound and ground states of coupled NLS-KDV equations with Hardy potential and critical power

51   0   0.0 ( 0 )
 نشر من قبل Alejandro Ortega
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the existence of bound and ground states for a family of nonlinear elliptic systems in $mathbb{R}^N$, which involves equations with critical power nonlinearities and Hardy-type singular potentials. The equations are coupled by what we call ``Schrodinger-Korteweg-de Vries non-symmetric terms, which arise in some phenomena of fluid mechanics. By means of variational methods, ground states are derived for several ranges of the positive coupling parameter $ u$. Moreover, by using min-max arguments, we seek bound states under some energy assumptions.



قيم البحث

اقرأ أيضاً

Let $Omega subset {mathbb R}^N$ ($N geq 3$) be a $C^2$ bounded domain and $delta$ be the distance to $partial Omega$. We study positive solutions of equation (E) $-L_mu u+ g(| abla u|) = 0$ in $Omega$ where $L_mu=Delta + frac{mu}{delta^2} $, $mu in ( 0,frac{1}{4}]$ and $g$ is a continuous, nondecreasing function on ${mathbb R}_+$. We prove that if $g$ satisfies a singular integral condition then there exists a unique solution of (E) with a prescribed boundary datum $ u$. When $g(t)=t^q$ with $q in (1,2)$, we show that equation (E) admits a critical exponent $q_mu$ (depending only on $N$ and $mu$). In the subcritical case, namely $1<q<q_mu$, we establish some a priori estimates and provide a description of solutions with an isolated singularity on $partial Omega$. In the supercritical case, i.e. $q_muleq q<2$, we demonstrate a removability result in terms of Bessel capacities.
In this paper, we first give a necessary and sufficient condition for the boundedness and the compactness for a class of nonlinear functionals in $H^{2}(mathbb{R}^4)$. Using this result and the principle of symmetric criticality, we can present a rel ationship between the existence of the nontrivial solutions to the semilinear bi-harmonic equation of the form [ (-Delta)^{2}u+gamma u=f(u) text{in} mathbb{R}^4 ] and the range of $gammain mathbb{R}^{+}$, where $f(s)$ is the general nonlinear term having the critical exponential growth at infinity. Our next goal in this paper is to establish the existence of the ground-state solutions for the equation begin{equation}label{con} (-Delta)^{2}u+V(x)u=lambda sexp(2|s|^{2})) text{in} mathbb{R}^{4}, end{equation} when $V(x)$ is a positive constant using the Fourier rearrangement and the Pohozaev identity. Then we will explore the relationship between the Nehari manifold and the corresponding limiting Nehari manifold to derive the existence of the ground state solutions for the above equation when $V(x)$ is the Rabinowitz type trapping potential, namely it satisfies $$0<V_{0}=underset{xinmathbb{R}^{4}}{inf}V(x) <underset{ | x | rightarrowinfty}{lim}V(x) < +infty. $$ The same result and proof applies to the harmonic equation with the critical exponential growth involving the Rabinowitz type trapping potential in $mathbb{R}^2$.
We consider the focusing energy critical NLS with inverse square potential in dimension $d= 3, 4, 5$ with the details given in $d=3$ and remarks on results in other dimensions. Solutions on the energy surface of the ground state are characterized. We prove that solutions with kinetic energy less than that of the ground state must scatter to zero or belong to the stable/unstable manifolds of the ground state. In the latter case they converge to the ground state exponentially in the energy space as $tto infty$ or $tto -infty$. (In 3-dim without radial assumption, this holds under the compactness assumption of non-scattering solutions on the energy surface.) When the kinetic energy is greater than that of the ground state, we show that all radial $H^1$ solutions blow up in finite time, with the only two exceptions in the case of 5-dim which belong to the stable/unstable manifold of the ground state. The proof relies on the detailed spectral analysis, local invariant manifold theory, and a global Virial analysis.
We study the existence of ground states to a nonlinear fractional Kirchhoff equation with an external potential $V$. Under suitable assumptions on $V$, using the monotonicity trick and the profile decomposition, we prove the existence of ground state s. In particular, the nonlinearity does not satisfy the Ambrosetti-Rabinowitz type condition or monotonicity assumptions.
145 - Penghui Zhang , Zhiqing Han 2021
This paper is concerned with the existence of ground states for a class of Kirchhoff type equation with combined power nonlinearities begin{equation*} -left(a+bint_{mathbb{R}^{3}}| abla u(x)|^{2}right) Delta u =lambda u+|u|^{p-2}u+u^{5}quad text{for some} lambdainmathbb{R},quad xinmathbb{R}^{3}, end{equation*} with prescribed $L^{2}$-norm mass begin{equation*} int_{mathbb{R}^{3}}u^{2}=c^{2} end{equation*} in Sobolev critical case and proves that the equation has a couple of solutions $(u_{c},lambda_{c})in S(c)times mathbb{R}$ for any $c>0$, $a,b >0$ and $frac{14}{3}leq p< 6,$ where $S(c)={uin H^{1}(mathbb{R}^{3}):int_{mathbb{R}^{3}}u^{2}=c^{2}}.$ textbf{Keywords:} Kirchhoff type equation; Critical nonlinearity; Normalized ground states oindent{AMS Subject Classification:, 37L05; 35B40; 35B41.}
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا