ﻻ يوجد ملخص باللغة العربية
In recent years, federated learning (FL) has been widely applied for supporting decentralized collaborative learning scenarios. Among existing FL models, federated logistic regression (FLR) is a widely used statistic model and has been used in various industries. To ensure data security and user privacy, FLR leverages homomorphic encryption (HE) to protect the exchanged data among different collaborative parties. However, HE introduces significant computational overhead (i.e., the cost of data encryption/decryption and calculation over encrypted data), which eventually becomes the performance bottleneck of the whole system. In this paper, we propose HAFLO, a GPU-based solution to improve the performance of FLR. The core idea of HAFLO is to summarize a set of performance-critical homomorphic operators (HO) used by FLR and accelerate the execution of these operators through a joint optimization of storage, IO, and computation. The preliminary results show that our acceleration on FATE, a popular FL framework, achieves a 49.9$times$ speedup for heterogeneous LR and 88.4$times$ for homogeneous LR.
Out of the rich family of generalized linear bandits, perhaps the most well studied ones are logisitc bandits that are used in problems with binary rewards: for instance, when the learner/agent tries to maximize the profit over a user that can select
We consider the setting of online logistic regression and consider the regret with respect to the 2-ball of radius B. It is known (see [Hazan et al., 2014]) that any proper algorithm which has logarithmic regret in the number of samples (denoted n) n
We present ADMM-Softmax, an alternating direction method of multipliers (ADMM) for solving multinomial logistic regression (MLR) problems. Our method is geared toward supervised classification tasks with many examples and features. It decouples the n
Coresets are one of the central methods to facilitate the analysis of large data sets. We continue a recent line of research applying the theory of coresets to logistic regression. First, we show a negative result, namely, that no strongly sublinear
In this work we propose to fit a sparse logistic regression model by a weakly convex regularized nonconvex optimization problem. The idea is based on the finding that a weakly convex function as an approximation of the $ell_0$ pseudo norm is able to