ﻻ يوجد ملخص باللغة العربية
Effectively tackling the problem of temporal action localization (TAL) necessitates a visual representation that jointly pursues two confounding goals, i.e., fine-grained discrimination for temporal localization and sufficient visual invariance for action classification. We address this challenge by enriching both the local and global contexts in the popular two-stage temporal localization framework, where action proposals are first generated followed by action classification and temporal boundary regression. Our proposed model, dubbed ContextLoc, can be divided into three sub-networks: L-Net, G-Net and P-Net. L-Net enriches the local context via fine-grained modeling of snippet-level features, which is formulated as a query-and-retrieval process. G-Net enriches the global context via higher-level modeling of the video-level representation. In addition, we introduce a novel context adaptation module to adapt the global context to different proposals. P-Net further models the context-aware inter-proposal relations. We explore two existing models to be the P-Net in our experiments. The efficacy of our proposed method is validated by experimental results on the THUMOS14 (54.3% at tIoU@0.5) and ActivityNet v1.3 (56.01% at tIoU@0.5) datasets, which outperforms recent states of the art. Code is available at https://github.com/buxiangzhiren/ContextLoc.
Weakly-Supervised Temporal Action Localization (WS-TAL) task aims to recognize and localize temporal starts and ends of action instances in an untrimmed video with only video-level label supervision. Due to lack of negative samples of background cate
Despite the success of deep learning for static image understanding, it remains unclear what are the most effective network architectures for the spatial-temporal modeling in videos. In this paper, in contrast to the existing CNN+RNN or pure 3D convo
Current state-of-the-art approaches for spatio-temporal action localization rely on detections at the frame level that are then linked or tracked across time. In this paper, we leverage the temporal continuity of videos instead of operating at the fr
Weakly supervised action localization is a challenging task with extensive applications, which aims to identify actions and the corresponding temporal intervals with only video-level annotations available. This paper analyzes the order-sensitive and
We introduce Activity Graph Transformer, an end-to-end learnable model for temporal action localization, that receives a video as input and directly predicts a set of action instances that appear in the video. Detecting and localizing action instance