ﻻ يوجد ملخص باللغة العربية
The nature of the QCD chiral phase transition in the limit of vanishing quark masses has remained elusive for a long time, since it cannot be simulated directly on the lattice and is strongly cutoff-dependent. We report on a comprehensive ongoing study using unimproved staggered fermions with $N_text{f}in[2,8]$ mass-degenerate flavours on $N_tauin{4,6,8}$ lattices, in which we locate the chiral critical surface separating regions with first-order transitions from crossover regions in the bare parameter space of the lattice theory. Employing the fact that it terminates in a tricritical line, this surface can be extrapolated to the chiral limit using tricritical scaling with known exponents. Knowing the order of the transitions in the lattice parameter space, conclusions for approaching the continuum chiral limit in the proper order can be drawn. While a narrow first-order region cannot be ruled out, we find initial evidence consistent with a second-order chiral transition in all massless theories with $N_text{f}leq 6$, and possibly up to the onset of the conformal window at $9lesssim N_text{f}^*lesssim 12$. A reanalysis of already published $mathcal{O}(a)$-improved $N_text{f}=3$ Wilson data on $N_tauin[4,12]$ is also consistent with tricritical scaling, and the associated change from first to second-order on the way to the continuum chiral limit. We discuss a modified Columbia plot and a phase diagram for many-flavour QCD that reflect these possible features.
We study properties of the thermal transition in QCD, using anisotropic, fixed-scale lattice simulations with $N_f = 2+1$ flavours of Wilson fermion. Observables are compared for two values of the pion mass, focusing on chiral properties. Results are
We study the thermal transition of QCD with two degenerate light flavours by lattice simulations using $O(a)$-improved Wilson quarks. Temperature scans are performed at a fixed value of $N_t = (aT)^{-1}=16$, where $a$ is the lattice spacing and $T$ t
Attempts to extract the order of the chiral transition of QCD at zero chemical potential, with two dynamical flavors of massless quarks, from simulations with progressively decreasing pion mass have remained inconclusive because of their increasing n
We investigate the nature of the chiral phase transition in the massless two-flavor QCD using the renormalization group improved gauge action and the Wilson quark action on $32^3times 16$, $24^3times 12$, and $16^3times 8$ lattices. We calculate the
We study the thermal transition of QCD with two degenerate light flavours by lattice simulations using $mathcal{O}(a)$-improved Wilson quarks. Particular emphasis lies on the pattern of chiral symmetry restoration, which we probe via the static scree