ترغب بنشر مسار تعليمي؟ اضغط هنا

On the strength of the $U_A(1)$ anomaly at the chiral phase transition in $N_f=2$ QCD

123   0   0.0 ( 0 )
 نشر من قبل Bastian B. Brandt
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the thermal transition of QCD with two degenerate light flavours by lattice simulations using $O(a)$-improved Wilson quarks. Temperature scans are performed at a fixed value of $N_t = (aT)^{-1}=16$, where $a$ is the lattice spacing and $T$ the temperature, at three fixed zero-temperature pion masses between 200 MeV and 540 MeV. In this range we find that the transition is consistent with a broad crossover. As a probe of the restoration of chiral symmetry, we study the static screening spectrum. We observe a degeneracy between the transverse isovector vector and axial-vector channels starting from the transition temperature. Particularly striking is the strong reduction of the splitting between isovector scalar and pseudoscalar screening masses around the chiral phase transition by at least a factor of three compared to its value at zero temperature. In fact, the splitting is consistent with zero within our uncertainties. This disfavours a chiral phase transition in the $O(4)$ universality class.



قيم البحث

اقرأ أيضاً

We study the thermal transition of QCD with two degenerate light flavours by lattice simulations using $mathcal{O}(a)$-improved Wilson quarks. Particular emphasis lies on the pattern of chiral symmetry restoration, which we probe via the static scree ning correlators. On $32^3$ volumes we observe that the screening masses in transverse iso-vector vector and axial-vector channels become degenerate at the transition temperature. The splitting between the screening masses in iso-vector scalar and pseudoscalar channels is strongly reduced compared to the splitting at zero temperature and is actually consistent with zero within uncertainties. In this proceedings article we extend our studies to matrix elements and iso-singlet correlation functions. Furthermore, we present results on larger volumes, including first results at the physical pion mass.
We present a lattice QCD based determination of the chiral phase transition temperature in QCD with two degenerate, massless quarks and a physical strange quark mass. We propose and calculate two novel estimators for the chiral transition temperature for several values of the light quark masses, corresponding to Goldstone pion masses in the range of $58~{rm MeV}lesssim m_pilesssim 163~{rm MeV}$. The chiral phase transition temperature is determined by extrapolating to vanishing pion mass using universal scaling analysis. Finite volume effects are controlled by extrapolating to the thermodynamic limit using spatial lattice extents in the range of $2.8$-$4.5$ times the inverse of the pion mass. Continuum extrapolations are carried out by using three different values of the lattice cut-off, corresponding to lattices with temporal extent $N_tau=6, 8$ and $12$. After thermodynamic, continuum and chiral extrapolations we find the chiral phase transition temperature $T_c^0=132^{+3}_{-6}$ MeV.
280 - G. Aarts , C. Allton , J. Glesaaen 2020
We study properties of the thermal transition in QCD, using anisotropic, fixed-scale lattice simulations with $N_f = 2+1$ flavours of Wilson fermion. Observables are compared for two values of the pion mass, focusing on chiral properties. Results are presented for the Polyakov loop, various susceptibilities, the chiral condensate and its susceptibility, and the onset of parity doubling in the light and strange baryonic sector.
The nature of the QCD chiral phase transition in the limit of vanishing quark masses has remained elusive for a long time, since it cannot be simulated directly on the lattice and is strongly cutoff-dependent. We report on a comprehensive ongoing stu dy using unimproved staggered fermions with $N_text{f}in[2,8]$ mass-degenerate flavours on $N_tauin{4,6,8}$ lattices, in which we locate the chiral critical surface separating regions with first-order transitions from crossover regions in the bare parameter space of the lattice theory. Employing the fact that it terminates in a tricritical line, this surface can be extrapolated to the chiral limit using tricritical scaling with known exponents. Knowing the order of the transitions in the lattice parameter space, conclusions for approaching the continuum chiral limit in the proper order can be drawn. While a narrow first-order region cannot be ruled out, we find initial evidence consistent with a second-order chiral transition in all massless theories with $N_text{f}leq 6$, and possibly up to the onset of the conformal window at $9lesssim N_text{f}^*lesssim 12$. A reanalysis of already published $mathcal{O}(a)$-improved $N_text{f}=3$ Wilson data on $N_tauin[4,12]$ is also consistent with tricritical scaling, and the associated change from first to second-order on the way to the continuum chiral limit. We discuss a modified Columbia plot and a phase diagram for many-flavour QCD that reflect these possible features.
The order of the thermal phase transition in the chiral limit of Quantum Chromodynamics (QCD) with two dynamical flavors of quarks is a long-standing issue and still not known in the continuum limit. Whether the transition is first or second order ha s important implications for the QCD phase diagram and the existence of a critical endpoint at finite densities. We follow a recently proposed approach to explicitly determine the region of first order chiral transitions at imaginary chemical potential, where it is large enough to be simulated, and extrapolate it to zero chemical potential with known critical exponents. Using unimproved Wilson fermions on coarse $N_t=4$ lattices, the first order region turns out to be so large that no extrapolation is necessary. The critical pion mass $m_pi^capprox 560$ MeV is by nearly a factor 10 larger than the corresponding one using staggered fermions. Our results are in line with investigations of three-flavour QCD using improved Wilson fermions and indicate that the systematic error on the two-flavour chiral transition is still of order 100%.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا