ﻻ يوجد ملخص باللغة العربية
Coherent quantum microwave transmission is key to realizing modular superconducting quantum computers and distributed quantum networks. However, a large number of incoherent photons are thermally generated in the microwave frequency spectrum. Hence, coherent transmission of microwave fields has long been believed to be infeasible without refrigeration. In this work, we propose a novel method for coherent microwave transmission using a typical microwave waveguide at room temperature. The proposed scheme considers two cryogenic nodes (i.e., a transmitter and a receiver) connected by a room-temperature microwave waveguide. At the receiver side, we implement a cryogenic loop antenna coupled to an LC harmonic oscillator inside the output port of the waveguide, while the LC harmonic oscillator is located outside the waveguide. The loop antenna converts the quantum microwave fields (which contain both signal and thermal noise photons) to a quantum voltage across the coupled LC harmonic oscillator. We show that by properly designing the loop antenna, the number of detected noise photons can be significantly less than one. Simultaneously, the detected signal photons can be maintained at a sufficient number greater than one by transmitting a proper number of photons at the input port of the waveguide. For example, we show that for a 10 GHz microwave signal, when using a room-temperature transmission waveguide of 5m length, 35 coherent photons are detected across the LC circuit by transmitting 32x10^4 signal photons at the input port of the waveguide. Interestingly, the number of detected noise photons is maintained as small as 6.3x10^-3. The microwave transmission scheme proposed in this work paves the way towards realizing practical modular quantum computers with a simple architecture.
We use nominally forbidden electron-nuclear spin transitions in nitrogen-vacancy (NV) centers in diamond to demonstrate coherent manipulation of a nuclear spin ensemble using microwave fields at room temperature. We show that employing an off-axis ma
Quantum control of a system requires the manipulation of quantum states faster than any decoherence rate. For mesoscopic systems, this has so far only been reached by few cryogenic systems. An important milestone towards quantum control is the so-cal
We demonstrate trapping of electrons in a millimeter-sized quadrupole Paul trap driven at 1.6~GHz in a room-temperature ultra-high vacuum setup. Cold electrons are introduced into the trap by ionization of atomic calcium via Rydberg states and stay c
Coherent coupling between single quantum objects is at the heart of modern quantum physics. When coupling is strong enough to prevail over decoherence, it can be used for the engineering of correlated quantum states. Especially for solid-state system
We formulate a mixed-state analog of the NLTS conjecture [FH14] by asking whether there exist topologically-ordered systems for which the thermal Gibbs state for constant temperature is globally-entangled in the sense that it cannot even be approxima