ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent Microwave Control of a Nuclear Spin Ensemble at Room Temperature

80   0   0.0 ( 0 )
 نشر من قبل Paul Huillery
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use nominally forbidden electron-nuclear spin transitions in nitrogen-vacancy (NV) centers in diamond to demonstrate coherent manipulation of a nuclear spin ensemble using microwave fields at room temperature. We show that employing an off-axis magnetic field with a modest amplitude($approx$ 0.01 T) at an angle with respect to the NV natural quantization axes is enough to tilt the direction of the electronic spins, and enable efficient spin exchange with the nitrogen nuclei of the NV center. We could then demonstrate fast Rabi oscillations on electron-nuclear spin exchanging transitions, coherent population trapping and polarization of nuclear spin ensembles in the microwave regime. Coupling many electronic spins of NV centers to their intrinsic nuclei offers full scalability with respect to the number of controllable spins and provides prospects for transduction. In particular, the technique could be applied to long-lived storage of microwave photons and to the coupling of nuclear spins to mechanical oscillators in the resolved sideband regime.



قيم البحث

اقرأ أيضاً

Coherent quantum microwave transmission is key to realizing modular superconducting quantum computers and distributed quantum networks. However, a large number of incoherent photons are thermally generated in the microwave frequency spectrum. Hence, coherent transmission of microwave fields has long been believed to be infeasible without refrigeration. In this work, we propose a novel method for coherent microwave transmission using a typical microwave waveguide at room temperature. The proposed scheme considers two cryogenic nodes (i.e., a transmitter and a receiver) connected by a room-temperature microwave waveguide. At the receiver side, we implement a cryogenic loop antenna coupled to an LC harmonic oscillator inside the output port of the waveguide, while the LC harmonic oscillator is located outside the waveguide. The loop antenna converts the quantum microwave fields (which contain both signal and thermal noise photons) to a quantum voltage across the coupled LC harmonic oscillator. We show that by properly designing the loop antenna, the number of detected noise photons can be significantly less than one. Simultaneously, the detected signal photons can be maintained at a sufficient number greater than one by transmitting a proper number of photons at the input port of the waveguide. For example, we show that for a 10 GHz microwave signal, when using a room-temperature transmission waveguide of 5m length, 35 coherent photons are detected across the LC circuit by transmitting 32x10^4 signal photons at the input port of the waveguide. Interestingly, the number of detected noise photons is maintained as small as 6.3x10^-3. The microwave transmission scheme proposed in this work paves the way towards realizing practical modular quantum computers with a simple architecture.
We achieve the strong coupling regime between an ensemble of phosphorus donor spins in a highly enriched $^{28}$Si crystal and a 3D dielectric resonator. Spins were polarized beyond Boltzmann equilibrium using spin selective optical excitation of the no-phonon bound exciton transition resulting in $N$ = $3.6cdot10^{13}$ unpaired spins in the ensemble. We observed a normal mode splitting of the spin ensemble-cavity polariton resonances of 2$gsqrt{N}$ = 580 kHz (where each spin is coupled with strength $g$) in a cavity with a quality factor of 75,000 ($gamma ll kappa approx$ 60 kHz where $gamma$ and $kappa$ are the spin dephasing and cavity loss rates, respectively). The spin ensemble has a long dephasing time (T$_2^*$ = 9 $mu$s) providing a wide window for viewing the dynamics of the coupled spin ensemble-cavity system. The free induction decay shows up to a dozen collapses and revivals revealing a coherent exchange of excitations between the superradiant state of the spin ensemble and the cavity at the rate $gsqrt{N}$. The ensemble is found to evolve as a single large pseudospin according to the Tavis-Cummings model due to minimal inhomogeneous broadening and uniform spin-cavity coupling. We demonstrate independent control of the total spin and the initial Z-projection of the psuedospin using optical excitation and microwave manipulation respectively. We vary the microwave excitation power to rotate the pseudospin on the Bloch sphere and observe a long delay in the onset of the superradiant emission as the pseudospin approaches full inversion. This delay is accompanied by an abrupt $pi$ phase shift in the peusdospin microwave emission. The scaling of this delay with the initial angle and the sudden phase shift are explained by the Tavis-Cummings model.
110 - T. Gaebel , M. Domhan , I. Popa 2006
Coherent coupling between single quantum objects is at the heart of modern quantum physics. When coupling is strong enough to prevail over decoherence, it can be used for the engineering of correlated quantum states. Especially for solid-state system s, control of quantum correlations has attracted widespread attention because of applications in quantum computing. Such coherent coupling has been demonstrated in a variety of systems at low temperature1, 2. Of all quantum systems, spins are potentially the most important, because they offer very long phase memories, sometimes even at room temperature. Although precise control of spins is well established in conventional magnetic resonance3, 4, existing techniques usually do not allow the readout of single spins because of limited sensitivity. In this paper, we explore dipolar magnetic coupling between two single defects in diamond (nitrogen-vacancy and nitrogen) using optical readout of the single nitrogen-vacancy spin states. Long phase memory combined with a defect separation of a few lattice spacings allow us to explore the strong magnetic coupling regime. As the two-defect system was well-isolated from other defects, the long phase memory times of the single spins was not diminished, despite the fact that dipolar interactions are usually seen as undesirable sources of decoherence. A coherent superposition of spin pair quantum states was achieved. The dipolar coupling was used to transfer spin polarisation from a nitrogen-vacancy centre spin to a nitrogen spin, with optical pumping of a nitrogen-vacancy centre leading to efficient initialisation. At the level anticrossing efficient nuclear spin polarisation was achieved. Our results demonstrate an important step towards controlled spin coupling and multi-particle entanglement in the solid state.
104 - Q. Chen , I. Schwarz , 2017
The coherent high-fidelity generation of nuclear spins in long-lived singlet states which may find application as quantum memory or sensor represents a considerable experimental challenge. Here we propose a dissipative scheme that achieves the prepar ation of pairs of nuclear spins in long-lived singlet states by a protocol that combines the interaction between the nuclei and a periodically reset electron spin of an NV center with local rf-control of the nuclear spins. The final state of this protocol is independent of the initial preparation of the nuclei, is robust to external field fluctuations and can be operated at room temperature. We show that a high fidelity singlet pair of a 13C dimer in a nuclear bath in diamond can be generated under realistic experimental conditions.
We introduce an optical tweezer platform for assembling and individually manipulating a two-dimensional register of nuclear spin qubits. Each nuclear spin qubit is encoded in the ground $^{1}S_{0}$ manifold of $^{87}$Sr and is individually manipulate d by site-selective addressing beams. We observe that spin relaxation is negligible after 5 seconds, indicating that $T_1gg5$ s. Furthermore, utilizing simultaneous manipulation of subsets of qubits, we demonstrate significant phase coherence over the entire register, estimating $T_2^star = left(21pm7right)$ s and measuring $T_2^text{echo}=left(42pm6right)$ s.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا