ترغب بنشر مسار تعليمي؟ اضغط هنا

Addressing Raman features of individual layers in isotopically labeled Bernal stacked bilayer graphene

93   0   0.0 ( 0 )
 نشر من قبل Martin Kalbac
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The most important bands for the evaluation of strain in graphene (the 2D and 2D prime modes) are investigated. It is shown that for Bernal-stacked bilayers, the two-phonon Raman features have three different components that can be assigned to processes originating solely from the top graphene layer, bottom graphene layer, and from a combination of processes originating both from the top and bottom layers. The individual components of the 2D and 2D prime modes are disentangled. The reported results enable addressing the properties of individual graphene layers in isotopically labelled turbostratic and Bernalstacked graphene systems.



قيم البحث

اقرأ أيضاً

The low-frequency magneto-optical properties of bilayer Bernal graphene are studied by the tight-binding model with four most important interlayer interactions taken into account. Since the main features of the wave functions are well depicted, the L andau levels can be divided into two groups based on the characteristics of the wave functions. These Landau levels lead to four categories of absorption peaks in the optical absorption spectra. Such absorption peaks own complex optical selection rules and these rules can be reasonably explained by the characteristics of the wave functions. In addition, twin-peak structures, regular frequency-dependent absorption rates and complex field-dependent frequencies are also obtained in this work. The main features of the absorption peaks are very different from those in monolayer graphene and have their origin in the interlayer interactions.
Hexagonal boron nitride (hBN) is the supporting substrate of choice for two-dimensional material devices because it is atomically flat and chemically inert. However, due to the small size of mechanically exfoliated hBN flakes, electronic structure st udies of 2D materials supported by hBN using angle-resolved photoemission spectroscopy (ARPES) are challenging. Here we investigate the electronic band structure of a Bernal-stacked bilayer graphene sheet on a hexagonal boron nitride (BLG/hBN) flake using nanospot ARPES (nanoARPES). By fitting high-resolution energy vs. momentum electronic band spectra, we extract the tight-binding parameters for BLG on hBN. In addition, we reveal spatial variations of the alignment angle between BLG and hBN lattices via inhomogeneity of the electronic bands near the Fermi level. We confirmed these findings by scanning tunneling microscopy measurements obtained on the same device. Our results from spatially resolved nanoARPES measurements of BLG/hBN heterostructures are instrumental for understanding experiments that utilize spatially averaging techniques such as electronic transport and optical spectroscopy.
The graphene-enhanced Raman scattering of Rhodamine 6G molecules on pristine, fluorinated and 4-nitrophenyl functionalized graphene substrates was studied. The uniformity of the Raman signal enhancement was studied by making large Raman maps. The rel ative enhancement of the Raman signal is demonstrated to be dependent on the functional groups, which was rationalized by the different doping levels of pristine, fluorinated and 4-nitrophenyl functionalized graphene substrates. The impact of the Fermi energy of graphene and the phonon energy of the molecules was considered together for the first time in order to explain the enhancement. Such approach enables to understand the enhancement without assuming anything about the uniformity of the molecules on the graphene surface. The agreement between the theory and our measured data was further demonstrated by varying excitation energy.
The electronic structure of bilayer graphene is investigated from a resonant Raman study using different laser excitation energies. The values of the parameters of the Slonczewski-Weiss-McClure model for graphite are measured experimentally and some of them differ significantly from those reported previously for graphite, specially that associated with the difference of the effective mass of electrons and holes. The splitting of the two TO phonon branches in bilayer graphene is also obtained from the experimental data. Our results have implications for bilayer graphene electronic devices.
The low-frequency optical excitations of AA-stacked bilayer graphene are investigated by the tight-binding model. Two groups of asymmetric LLs lead to two kinds of absorption peaks resulting from only intragroup excitations. Each absorption peak obey s a single selection rule similar to that of monolayer graphene. The excitation channel of each peak is changed as the field strength approaches a critical strength. This alteration of the excitation channel is strongly related to the setting of the Fermi level. The peculiar optical properties can be attributed to the characteristics of the LL wave functions of the two LL groups. A detailed comparison of optical properties between AA-stacked and AB-stacked bilayer graphenes is also offered. The compared results demonstrate that the optical properties are strongly dominated by the stacking symmetry. Furthermore, the presented results may be used to discriminate AABG from MG, which can be hardly done by STM.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا