ﻻ يوجد ملخص باللغة العربية
Let Sigma denote the prismatization of Spf (Z_p). The multiplicative group over Sigma maps to the prismatization of the multiplicative group over Spf (Z_p). We prove that the kernel of this map is the Cartier dual of some 1-dimensional formal group over Sigma. We obtain some results about this formal group (e.g., we describe its Lie algebra). We give a very explicit description of the pullback of the formal group to the quotient of the q-de Rham prism by the action of the multiplicative group of Z_p.
We prove that the $infty$-category of $mathrm{MGL}$-modules over any scheme is equivalent to the $infty$-category of motivic spectra with finite syntomic transfers. Using the recognition principle for infinite $mathbb{P}^1$-loop spaces, we deduce tha
We prove that existence of a k-rational point can be detected by the stable A^1-homotopy category of S^1-spectra, or even a rationalized variant of this category.
Let k be a field. Denote by Spc(k)_* the unstable, pointed motivic homotopy category and by Omega_Gm: Spc(k)_* to Spc(k)_* the Gm-loops functor. For a k-group G, denote by Gr_G the affine Grassmannian of G. If G is isotropic reductive, we provide a c
We study the 0-th stable A^1-homotopy sheaf of a smooth proper variety over a field k assumed to be infinite, perfect and to have characteristic unequal to 2. We provide an explicit description of this sheaf in terms of the theory of (twisted) Chow-W
We study generically split octonion algebras over schemes using techniques of ${mathbb A}^1$-homotopy theory. By combining affine representability results with techniques of obstruction theory, we establish classification results over smooth affine s