ﻻ يوجد ملخص باللغة العربية
Let k be a field. Denote by Spc(k)_* the unstable, pointed motivic homotopy category and by Omega_Gm: Spc(k)_* to Spc(k)_* the Gm-loops functor. For a k-group G, denote by Gr_G the affine Grassmannian of G. If G is isotropic reductive, we provide a canonical motivic equivalence Omega_Gm G = Gr_G. If k is perfect, we use this to compute the motive M(Omega_Gm G) in DM(k, Z).
We construct many``low rank algebraic vector bundles on ``simple smooth affine varieties of high dimension. In a related direction, we study the existence of polynomial representatives of elements in the classical (unstable) homotopy groups of sphere
We prove that the $infty$-category of $mathrm{MGL}$-modules over any scheme is equivalent to the $infty$-category of motivic spectra with finite syntomic transfers. Using the recognition principle for infinite $mathbb{P}^1$-loop spaces, we deduce tha
We extend the stable motivic homotopy category of Voevodsky to the class of scalloped algebraic stacks, and show that it admits the formalism of Grothendiecks six operations. Objects in this category represent generalized cohomology theories for stac
We prove that existence of a k-rational point can be detected by the stable A^1-homotopy category of S^1-spectra, or even a rationalized variant of this category.
We obtain geometric models for the infinite loop spaces of the motivic spectra $mathrm{MGL}$, $mathrm{MSL}$, and $mathbf{1}$ over a field. They are motivically equivalent to $mathbb{Z}times mathrm{Hilb}_infty^mathrm{lci}(mathbb{A}^infty)^+$, $mathbb{