ترغب بنشر مسار تعليمي؟ اضغط هنا

Analysis of three-body charmed B meson decays under the factorization-assisted topological-amplitude approach

149   0   0.0 ( 0 )
 نشر من قبل Run-Hui Li
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the quasi-two-body charmed $B$ decays $B^{+,0}_{(s)} to D_{(s)}^* P_2 to D_{(s)} P_1 P_2$ with $P_{1,2}$ as a pion or kaon. The intermediate processes $B_{(s)} to D_{(s)}^* P_2 $ are calculated with the factorization-assisted topological-amplitude approach and the resonant effects are calculated with the Breit-Wigner formalism. Taking all p-wave resonance states $ bar D_{(s)}^*$ into consideration, we present the related branching fractions, calculate the Breit-Wigner-Tail effects, and investigate the flavor $SU(3)$ breaking effects. Most of our branching fractions are consistent with the perturbative QCD approachs predictions as well as the current experimental data. With more precision calculation of the intermediate two body charmed B meson decays, our quasi-two-body B decays calculation has significantly less theoretical uncertainty than the perturbative QCD approach. Many of those channels without any experimental data will be confronted with the future more accurate experiment measurements. Our results of the Breit-Wigner-tail effects also agree with the experimental very well. In $B^0$ decays this effect can reach approximately to $5%$. It is also found that the Breit-Wigner-tail effects are not sensitive to the widths of their corresponding resonances. The flavor $SU(3)$ symmetry breaking effect is also investigated.

قيم البحث

اقرأ أيضاً

We provide a comprehensive test of factorization in the heavy-heavy $B$ decays motivated by the recent experimental data from BELLE and BABAR collaborations. The penguin effects are not negligible in the B decays with two pseudoscalar mesons. The dir ect CP asymmetries are found to be a few percent. We give estimates on the weak annihilation contributions by analogy to the observed annihilation-dominated processes. The $N_c$ insensitivity of branching ratios indicates that the soft final state interactions are not dominant. We also study the polarizations in $Bto D^*D_{(s)}^*$ decays. The power law shows that the transverse perpendicular polarization fraction is small. The effects of the heavy quark symmetry breaking caused by the perturbative QCD and power corrections on the transverse polarization are also investigated.
To date, the weak-phase $gamma$ has been measured using two-body $B$-meson decays such as $Bto D K$ and $Bto Dpi$, whose amplitudes contain only tree-level diagrams. But $gamma$ can also be extracted from three-body charmless hadronic $B$ decays. Sin ce the amplitudes for such decays contain both tree- and loop-level diagrams, $gamma$ obtained in this way is sensitive to new physics that can enter into these loops. The comparison of the values of $gamma$ extracted using tree-level and loop-level methods is therefore an excellent test for new physics. In this talk, we will show how U-spin and flavor-SU(3) symmetries can be used to develop methods for extracting $gamma$ from $Bto Kpipi$ and $Bto KK{bar K}$ decays. We describe a successful implementation of the flavor-SU(3) symmetry method applied to BaBar data.
We analyze $D to P V$, $D to PP$ and $D to VV$ decays within a model developed to describe the semileptonic decays $D to V l u_l$ and $Dto P l u_l$. This model combines the heavy quark effective Lagrangian and chiral perturbation theory. We determi ne amplitudes for decays in which the direct weak annihilation of the initial $D$ meson is absent or negligible, and in which the final state interactions are small. This analysis reduces the arbitrariness in the choice of model parameters. The calculated decay widths are in good agreement with the experimental results.
We study the three-body anti-triplet ${bf B_c}to {bf B_n}MM$ decays with the $SU(3)$ flavor ($SU(3)_f$) symmetry, where ${bf B_c}$ denotes the charmed baryon anti-triplet of $(Xi_c^0,-Xi_c^+,Lambda_c^+)$, and ${bf B_n}$ and $M(M)$ represent baryon an d meson octets, respectively. By considering only the S-wave $MM$-pair contributions without resonance effects, the decays of ${bf B_c}to {bf B_n}MM$ can be decomposed into irreducible forms with 11 parameters under $SU(3)_f$, which are fitted by the 14 existing data, resulting in a reasonable value of $chi^2/d.o.f=2.8$ for the fit. Consequently, we find that the triangle sum rule of ${cal A}(Lambda_c^+to nbar K^0 pi^+)-{cal A}(Lambda_c^+to pK^- pi^+)-sqrt 2 {cal A}(Lambda_c^+to pbar K^0 pi^0)=0$ given by the isospin symmetry holds under $SU(3)_f$, where ${cal A}$ stands for the decay amplitude. In addition, we predict that ${cal B}(Lambda_c^+to n pi^{+} bar{K}^{0})=(0.9pm 0.8)times 10^{-2}$, which is $3-4$ times smaller than the BESIII observation, indicating the existence of the resonant states. For the to-be-observed ${bf B_c}to {bf B_n}MM$ decays, we compute the branching fractions with the $SU(3)_f$ amplitudes to be compared to the BESIII and LHCb measurements in the future.
Using methods of effective field theory, factorized expressions for arbitrary B -> X_u l nu decay distributions in the shape-function region of large hadronic energy and moderate hadronic invariant mass are derived. Large logarithms are resummed at n ext-to-leading order in renormalization-group improved perturbation theory. The operator product expansion is employed to relate moments of the renormalized shape function with HQET parameters such as m_b, Lambda(bar) and lambda_1 defined in a new physical subtraction scheme. An analytic expression for the asymptotic behavior of the shape function is obtained, which reveals that it is not positive definite. Explicit expressions are presented for the charged-lepton energy spectrum, the hadronic invariant mass distribution, and the spectrum in the hadronic light-cone momentum P_+ = E_H - P_H. A new method for a precision measurement of |V_{ub}| is proposed, which combines good theoretical control with high efficiency and a powerful discrimination against charm background.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا