ترغب بنشر مسار تعليمي؟ اضغط هنا

Economic Recession Prediction Using Deep Neural Network

78   0   0.0 ( 0 )
 نشر من قبل Zihao Wang
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the effectiveness of different machine learning methodologies in predicting economic cycles. We identify the deep learning methodology of Bi-LSTM with Autoencoder as the most accurate model to forecast the beginning and end of economic recessions in the U.S. We adopt commonly-available macro and market-condition features to compare the ability of different machine learning models to generate good predictions both in-sample and out-of-sample. The proposed model is flexible and dynamic when both predictive variables and model coefficients vary over time. It provided good out-of-sample predictions for the past two recessions and early warning about the COVID-19 recession.



قيم البحث

اقرأ أيضاً

While deep neural networks (DNNs) have been increasingly applied to choice analysis showing high predictive power, it is unclear to what extent researchers can interpret economic information from DNNs. This paper demonstrates that DNNs can provide ec onomic information as complete as classical discrete choice models (DCMs). The economic information includes choice predictions, choice probabilities, market shares, substitution patterns of alternatives, social welfare, probability derivatives, elasticities, marginal rates of substitution (MRS), and heterogeneous values of time (VOT). Unlike DCMs, DNNs can automatically learn the utility function and reveal behavioral patterns that are not prespecified by domain experts. However, the economic information obtained from DNNs can be unreliable because of the three challenges associated with the automatic learning capacity: high sensitivity to hyperparameters, model non-identification, and local irregularity. To demonstrate the strength and challenges of DNNs, we estimated the DNNs using a stated preference survey, extracted the full list of economic information from the DNNs, and compared them with those from the DCMs. We found that the economic information either aggregated over trainings or population is more reliable than the disaggregate information of the individual observations or trainings, and that even simple hyperparameter searching can significantly improve the reliability of the economic information extracted from the DNNs. Future studies should investigate other regularizations and DNN architectures, better optimization algorithms, and robust DNN training methods to address DNNs three challenges, to provide more reliable economic information from DNN-based choice models.
It is an enduring question how to combine revealed preference (RP) and stated preference (SP) data to analyze travel behavior. This study presents a framework of multitask learning deep neural networks (MTLDNNs) for this question, and demonstrates th at MTLDNNs are more generic than the traditional nested logit (NL) method, due to its capacity of automatic feature learning and soft constraints. About 1,500 MTLDNN models are designed and applied to the survey data that was collected in Singapore and focused on the RP of four current travel modes and the SP with autonomous vehicles (AV) as the one new travel mode in addition to those in RP. We found that MTLDNNs consistently outperform six benchmark models and particularly the classical NL models by about 5% prediction accuracy in both RP and SP datasets. This performance improvement can be mainly attributed to the soft constraints specific to MTLDNNs, including its innovative architectural design and regularization methods, but not much to the generic capacity of automatic feature learning endowed by a standard feedforward DNN architecture. Besides prediction, MTLDNNs are also interpretable. The empirical results show that AV is mainly the substitute of driving and AV alternative-specific variables are more important than the socio-economic variables in determining AV adoption. Overall, this study introduces a new MTLDNN framework to combine RP and SP, and demonstrates its theoretical flexibility and empirical power for prediction and interpretation. Future studies can design new MTLDNN architectures to reflect the speciality of RP and SP and extend this work to other behavioral analysis.
To contain the pandemic of coronavirus (COVID-19) in Mainland China, the authorities have put in place a series of measures, including quarantines, social distancing, and travel restrictions. While these strategies have effectively dealt with the cri tical situations of outbreaks, the combination of the pandemic and mobility controls has slowed Chinas economic growth, resulting in the first quarterly decline of Gross Domestic Product (GDP) since GDP began to be calculated, in 1992. To characterize the potential shrinkage of the domestic economy, from the perspective of mobility, we propose two new economic indicators: the New Venues Created (NVC) and the Volumes of Visits to Venue (V^3), as the complementary measures to domestic investments and consumption activities, using the data of Baidu Maps. The historical records of these two indicators demonstrated strong correlations with the past figures of Chinese GDP, while the status quo has dramatically changed this year, due to the pandemic. We hereby presented a quantitative analysis to project the impact of the pandemic on economies, using the recent trends of NVC and V^3. We found that the most affected sectors would be travel-dependent businesses, such as hotels, educational institutes, and public transportation, while the sectors that are mandatory to human life, such as workplaces, residential areas, restaurants, and shopping sites, have been recovering rapidly. Analysis at the provincial level showed that the self-sufficient and self-sustainable economic regions, with internal supplies, production, and consumption, have recovered faster than those regions relying on global supply chains.
In this paper we propose a theoretical model including a susceptible-infected-recovered-dead (SIRD) model of epidemic in a dynamic macroeconomic general equilibrium framework with agents mobility. The latter affect both their income (and consumption) and their probability of infecting and of being infected. Strategic complementarities among individual mobility choices drive the evolution of aggregate economic activity, while infection externalities caused by individual mobility affect disease diffusion. Rational expectations of forward looking agents on the dynamics of aggregate mobility and epidemic determine individual mobility decisions. The model allows to evaluate alternative scenarios of mobility restrictions, especially policies dependent on the state of epidemic. We prove the existence of an equilibrium and provide a recursive construction method for finding equilibrium(a), which also guides our numerical investigations. We calibrate the model by using Italian experience on COVID-19 epidemic in the period February 2020 - May 2021. We discuss how our economic SIRD (ESIRD) model produces a substantially different dynamics of economy and epidemic with respect to a SIRD model with constant agents mobility. Finally, by numerical explorations we illustrate how the model can be used to design an efficient policy of state-of-epidemic-dependent mobility restrictions, which mitigates the epidemic peaks stressing health system, and allows for trading-off the economic losses due to reduced mobility with the lower death rate due to the lower spread of epidemic.
We present a new metric estimating fitness of countries and complexity of products by exploiting a non-linear non-homogeneous map applied to the publicly available information on the goods exported by a country. The non homogeneous terms guarantee bo th convergence and stability. After a suitable rescaling of the relevant quantities, the non homogeneous terms are eventually set to zero so that this new metric is parameter free. This new map almost reproduces the results of the original homogeneous metrics already defined in literature and allows for an approximate analytic solution in case of actual binarized matrices based on the Revealed Comparative Advantage (RCA) indicator. This solution is connected with a new quantity describing the neighborhood of nodes in bipartite graphs, representing in this work the relations between countries and exported products. Moreover, we define the new indicator of country net-efficiency quantifying how a country efficiently invests in capabilities able to generate innovative complex high quality products. Eventually, we demonstrate analytically the local convergence of the algorithm involved.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا