ترغب بنشر مسار تعليمي؟ اضغط هنا

The Rise and Fall of the King: The Correlation between FO Aquariis Low States and the White Dwarfs Spindown

114   0   0.0 ( 0 )
 نشر من قبل Colin Littlefield
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The intermediate polar FO Aquarii (FO Aqr) experienced its first-reported low-accretion states in 2016, 2017, and 2018, and using newly available photographic plates, we identify pre-discovery low states in 1965, 1966, and 1974. The primary focus of our analysis, however, is an extensive set of time-series photometry obtained between 2002 and 2018, with particularly intensive coverage of the 2016-2018 low states. After computing an updated spin ephemeris for the white dwarf (WD), we show that its spin period began to increase in 2014 after having spent 27 years decreasing; no other intermediate polar has experienced a sign change of its period derivative, but FO Aqr has now done so twice. Our central finding is that the recent low states all occurred shortly after the WD began to spin down, even though no low states were reported in the preceding quarter-century, when it was spinning up. Additionally, the systems mode of accretion is extremely sensitive to the mass-transfer rate, with accretion being almost exclusively disk-fed when FO Aqr is brighter than V~14 and substantially stream-fed when it is not. Even in the low states, a grazing eclipse remains detectable, confirming the presence of a disk-like structure (but not necessarily a Keplerian accretion disk). We relate these various observations to theoretical predictions that during the low state, the systems accretion disk dissipates into a non-Keplerian ring of diamagnetic blobs. Finally, a new XMM-Newton observation from a high state in 2017 reveals an anomalously soft X-ray spectrum and diminished X-ray luminosity compared to pre-2016 observations.

قيم البحث

اقرأ أيضاً

In 2016 May, the intermediate polar FO~Aqr was detected in a low state for the first time in its observational history. We report time-resolved photometry of the system during its initial recovery from this faint state. Our data, which includes high- speed photometry with cadences of just 2 sec, shows the existence of very strong periodicities at 22.5 min and 11.26 min, equivalent to the spin-orbit beat frequency and twice its value, respectively. A pulse at the spin frequency is also present but at a much lower amplitude than is normally observed in the bright state. By comparing our power spectra with theoretical models, we infer that a substantial amount of accretion was stream-fed during our observations, in contrast to the disk-fed accretion that dominates the bright state. In addition, we find that FO~Aqrs rate of recovery has been unusually slow in comparison to rates of recovery seen in other magnetic cataclysmic variables, with an $e$-folding time of 115$pm7$ days. The recovery also shows irregular variations in the median brightness of as much as 0.2~mag over a 10-day span. Finally, we show that the arrival times of the spin pulses are dependent upon the systems overall brightness.
HS Hydrae is a short period eclipsing binary (P_orb=1.57 day) that belongs to a rare group of systems observed to have rapidly changing inclinations. This evolution is due to a third star on an intermediate orbit, and results in significant differenc es in eclipse depths and timings year-to-year. Zasche & Paschke (2012) revealed that HS Hydraes eclipses were rapidly fading from view, predicting they would cease around 2022. Using 25 days of photometric data from Sector 009 of the Transiting Exoplanet Survey Satellite (TESS), we find that the primary eclipses for HS Hydrae were only 0.00173+/-0.00007 mag in depth in March 2019. This data from TESS likely represents the last eclipses detected from HS Hydrae. We also searched the Digitization of the Harvard Astronomical Plate Collection (DASCH) archive for historic data from the system. With a total baseline of over 125 years, this unique combination of data sets - from photographic plates to precision space-based photometry - allows us to trace the emergence and decay of eclipses from HS Hydrae, and further constrain its evolution. Recent TESS observations from Sector 035 confirm that eclipses have ceased for HS Hya, and we estimate they will begin again in 2195.
93 - J. Debes , K. Walsh , C. Stark 2012
It has long been suspected that metal polluted white dwarfs (types DAZ, DBZ, and DZ) and white dwarfs with dusty disks possess planetary systems, but a specific physical mechanism by which planetesimals are perturbed close to a white dwarf has not ye t been fully posited. In this paper we demonstrate that mass loss from a central star during post main sequence evolution can sweep planetesimals into interior mean motion resonances with a single giant planet. These planetesimals are slowly removed through chaotic excursions of eccentricity that in time create radial orbits capable of tidally disrupting the planetesimal. Numerical N-body simulations of the Solar System show that a sufficient number of planetesimals are perturbed to explain white dwarfs with both dust and metal pollution, provided other white dwarfs have more massive relic asteroid belts. Our scenario requires only one Jupiter-sized planet and a sufficient number of asteroids near its 2:1 interior mean motion resonance. Finally, we show that once a planetesimal is perturbed into a tidal crossing orbit, it will become disrupted after the first pass of the white dwarf, where a highly eccentric stream of debris forms the main reservoir for dust producing collisions. These simulations, in concert with observations of white dwarfs, place interesting limits on the frequency of planetary systems around main sequence stars, the frequency of planetesimal belts, and the probability that dust may obscure future terrestrial planet finding missions.
We present infrared spectroscopy of the classical nova V339 Delphini, obtained over a $sim2$ year period. The infrared emission lines were initially symmetrical, with HWHM velocities of 525 km s$^{-1}$. In later ($tgtrsim77$days, where $t$ is the tim e from outburst) spectra however, the lines displayed a distinct asymmetry, with a much stronger blue wing, possibly due to obscuration of the receding component by dust. Dust formation commenced at $sim$ day 34.75 at a condensation temperature of $1480pm20$K, consistent with graphitic carbon. Thereafter the dust temperature declined with time as $T_{rm d}propto{t}^{-0.346}$, also consistent with graphitic carbon. The mass of dust initally rose, as a result of an increase in grain size and/or number, peaked at $sim$ day 100, and then declined precipitously. This decline was most likely caused by grain shattering due to electrostatic stress after the dust was exposed to X-radiation. An Appendix summarises Planck Means for carbon, and the determination of grain mass and radius for a carbon dust shell.
Spitzers final Infrared Array Camera (IRAC) observations of SN 1987A show the 3.6 and 4.5 $mu$m emission from the equatorial ring (ER) continues a period of steady decline. Deconvolution of the images reveals that the emission is dominated by the rin g, not the ejecta, and is brightest on the west side. Decomposition of the marginally resolved emission also confirms this, and shows that the west side of the ER has been brightening relative to the other portions of the ER. The infrared (IR) morphological changes resemble those seen in both the soft X-ray emission and the optical emission. The integrated ER light curves at 3.6 and 4.5 $mu$m are more similar to the optical light curves than the soft X-ray light curve, though differences would be expected if dust is responsible for this emission and its destruction is rapid. Future observations with the James Webb Space Telescope will continue to monitor the ER evolution, and will reveal the true spectrum and nature of the material responsible for the broadband emission at 3.6 and 4.5 $mu$m. The present observations also serendipitously reveal a nearby variable source, subsequently identified as a Be star, that has gone through a multi-year outburst during the course of these observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا