ترغب بنشر مسار تعليمي؟ اضغط هنا

Master Bellman equation in the Wasserstein space: Uniqueness of viscosity solutions

230   0   0.0 ( 0 )
 نشر من قبل Huyen Pham
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the Bellman equation in the Wasserstein space arising in the study of mean field control problems, namely stochastic optimal control problems for McKean-Vlasov diffusion processes. Using the standard notion of viscosity solution {`a} la Crandall-Lions extended to our Wasserstein setting, we prove a comparison result under general conditions, which coupled with the dynamic programming principle, implies that the value function is the unique viscosity solution of the Master Bellman equation. This is the first uniqueness result in such a second-order context. The classical arguments used in the standard cases of equations in finite-dimensional spaces or in infinite-dimensional separable Hilbert spaces do not extend to the present framework, due to the awkward nature of the underlying Wasserstein space. The adopted strategy is based on finite-dimensional approximations of the value function obtained in terms of the related cooperative n-player game, and on the construction of a smooth gauge-type function, built starting from a regularization of a sharpe estimate of the Wasserstein metric; such a gauge-type function is used to generate maxima/minima through a suitable extension of the Borwein-Preiss generalization of Ekelands variational principle on the Wasserstein space.



قيم البحث

اقرأ أيضاً

81 - Andrea Cosso 2021
We prove existence and uniqueness of Crandall-Lions viscosity solutions of Hamilton-Jacobi-Bellman equations in the space of continuous paths, associated to the optimal control of path-dependent SDEs. This seems the first uniqueness result in such a context. More precisely, similarly to the seminal paper of P.L. Lions, the proof of our core result, that is the comparison theorem, is based on the fact that the value function is bigger than any viscosity subsolution and smaller than any viscosity supersolution. Such a result, coupled with the proof that the value function is a viscosity solution (based on the dynamic programming principle, which we prove), implies that the value function is the unique viscosity solution to the Hamilton-Jacobi-Bellman equation. The proof of the comparison theorem in P.L. Lions paper, relies on regularity results which are missing in the present infinite-dimensional context, as well as on the local compactness of the finite-dimensional underlying space. We overcome such non-trivial technical difficulties introducing a suitable approximating procedure and a smooth gauge-type function, which allows to generate maxima and minima through an appropriate version of the Borwein-Preiss generalization of Ekelands variational principle on the space of continuous paths.
209 - Nikos Katzourakis 2014
This paper is a review of results on Optimisation which are perhaps not so standard in the PDE realm. To this end, we consider the problem of deriving the PDEs associated to the optimal control of a system of either ODEs or SDEs with respect to a vec tor-valued cost functional. Optimisation is considered with respect to a partial ordering generated by a given cone. Since in the vector case minima may not exist, we define vectorial value functions as (Pareto) minimals of the ordering. Our main objective is the derivation of the model PDEs which turn out to be parametric families of HJB single equations instead of systems of PDEs. However, this allows the use of the theory of Viscosity Solutions.
109 - Guy Barles 2008
We study a hybrid control system in which both discrete and continuous controls are involved. The discrete controls act on the system at a given set interface. The state of the system is changed discontinuously when the trajectory hits predefined set s, namely, an autonomous jump set $A$ or a controlled jump set $C$ where controller can choose to jump or not. At each jump, trajectory can move to a different Euclidean space. We allow the cost functionals to be unbounded with certain growth and hence the corresponding value function can be unbounded. We characterize the value function as the unique viscosity solution of the associated quasivariational inequality in a suitable function class. We also consider the evolutionary, finite horizon hybrid control problem with similar model and prove that the value function is the unique viscosity solution in the continuous function class while allowing cost functionals as well as the dynamics to be unbounded.
In quantitative genetics, viscosity solutions of Hamilton-Jacobi equations appear naturally in the asymptotic limit of selection-mutation models when the population variance vanishes. They have to be solved together with an unknown function I(t) that arises as the counterpart of a non-negativity constraint on the solution at each time. Although the uniqueness of viscosity solutions is known for many variants of Hamilton-Jacobi equations, the uniqueness for this particular type of constrained problem was not resolved, except in a few particular cases. Here, we provide a general answer to the uniqueness problem, based on three main assumptions: convexity of the Hamiltonian function H(I, x, p) with respect to p, monotonicity of H with respect to I, and BV regularity of I(t).
We show that the Hunter-Saxton equation $u_t+uu_x=frac14big(int_{-infty}^x dmu(t,z)- int^{infty}_x dmu(t,z)big)$ and $mu_t+(umu)_x=0$ has a unique, global, weak, and conservative solution $(u,mu)$ of the Cauchy problem on the line.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا