ترغب بنشر مسار تعليمي؟ اضغط هنا

Almost Proportional Allocations for Indivisible Chores

143   0   0.0 ( 0 )
 نشر من قبل Bo Li
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we consider how to fairly allocate $m$ indivisible chores to a set of $n$ (asymmetric) agents. As exact fairness cannot be guaranteed, motivated by the extensive study of EF1, EFX and PROP1 allocations, we propose and study {em proportionality up to any item} (PROPX), and show that a PROPX allocation always exists. We argue that PROPX might be a more reliable relaxation for proportionality in practice than the commonly studied maximin share fairness (MMS) by the facts that (1) MMS allocations may not exist even with three agents, but PROPX allocations always exist even for the weighted case when agents have unequal obligation shares; (2) any PROPX allocation ensures 2-approximation for MMS, but an MMS allocation can be as bad as $Theta(n)$-approximation to PROPX. We propose two algorithms to compute PROPX allocations and each of them has its own merits. Our first algorithm is based on a recent refinement for the well-known procedure -- envy-cycle elimination, where the returned allocation is simultaneously PROPX and $4/3$-approximate MMS. A by-product result is that an exact EFX allocation for indivisible chores exists if all agents have the same ordinal preference over the chores, which might be of independent interest. The second algorithm is called bid-and-take, which applies to the weighted case. Furthermore, we study the price of fairness for (weighted) PROPX allocations, and show that the algorithm computes allocations with the optimal guarantee on the approximation ratio to the optimal social welfare without fairness constraints.



قيم البحث

اقرأ أيضاً

143 - Shengwei Zhou , Xiaowei Wu 2021
In this paper we study how to fairly allocate a set of m indivisible chores to a group of n agents, each of which has a general additive cost function on the items. Since envy-free (EF) allocation is not guaranteed to exist, we consider the notion of envy-freeness up to any item (EFX). In contrast to the fruitful results regarding the (approximation of) EFX allocations for goods, very little is known for the allocation of chores. Prior to our work, for the allocation of chores, it is known that EFX allocations always exist for two agents, or general number of agents with IDO cost functions. For general instances, no non-trivial approximation result regarding EFX allocation is known. In this paper we make some progress in this direction by showing that for three agents we can always compute a 5-approximation of EFX allocation in polynomial time. For n>=4 agents, our algorithm always computes an allocation that achieves an approximation ratio of O(n^2) regarding EFX.
115 - Xingyu Chen , Zijie Liu 2020
The leximin solution -- which selects an allocation that maximizes the minimum utility, then the second minimum utility, and so forth -- is known to provide EFX (envy-free up to any good) fairness guarantee in some contexts when allocating indivisibl e goods. However, it remains unknown how fair the leximin solution is when used to allocate indivisible chores. In this paper, we demonstrate that the leximin solution can be modified to also provide compelling fairness guarantees for the allocation of indivisible chores. First, we generalize the definition of the leximin solution. Then, we show that the leximin solution finds a PROP1 (proportional up to one good) and PO (Pareto-optimal) allocation for 3 or 4 agents in the context of chores allocation with additive distinct valuations. Additionally, we prove that the leximin solution is EFX for combinations of goods and chores for agents with general but identical valuations.
We study fair allocation of indivisible public goods subject to cardinality (budget) constraints. In this model, we have n agents and m available public goods, and we want to select $k leq m$ goods in a fair and efficient manner. We first establish f undamental connections between the models of private goods, public goods, and public decision making by presenting polynomial-time reductions for the popular solution concepts of maximum Nash welfare (MNW) and leximin. These mechanisms are known to provide remarkable fairness and efficiency guarantees in private goods and public decision making settings. We show that they retain these desirable properties even in the public goods case. We prove that MNW allocations provide fairness guarantees of Proportionality up to one good (Prop1), $1/n$ approximation to Round Robin Share (RRS), and the efficiency guarantee of Pareto Optimality (PO). Further, we show that the problems of finding MNW or leximin-optimal allocations are NP-hard, even in the case of constantly many agents, or binary valuations. This is in sharp contrast to the private goods setting that admits polynomial-time algorithms under binary valuations. We also design pseudo-polynomial time algorithms for computing an exact MNW or leximin-optimal allocation for the cases of (i) constantly many agents, and (ii) constantly many goods with additive valuations. We also present an O(n)-factor approximation algorithm for MNW which also satisfies RRS, Prop1, and 1/2-Prop.
We study the problem of computing maximin share guarantees, a recently introduced fairness notion. Given a set of $n$ agents and a set of goods, the maximin share of a single agent is the best that she can guarantee to herself, if she would be allowe d to partition the goods in any way she prefers, into $n$ bundles, and then receive her least desirable bundle. The objective then in our problem is to find a partition, so that each agent is guaranteed her maximin share. In settings with indivisible goods, such allocations are not guaranteed to exist, so we resort to approximation algorithms. Our main result is a $2/3$-approximation, that runs in polynomial time for any number of agents. This improves upon the algorithm of Procaccia and Wang, which also produces a $2/3$-approximation but runs in polynomial time only for a constant number of agents. To achieve this, we redesign certain parts of their algorithm. Furthermore, motivated by the apparent difficulty, both theoretically and experimentally, in finding lower bounds on the existence of approximate solutions, we undertake a probabilistic analysis. We prove that in randomly generated instances, with high probability there exists a maximin share allocation. This can be seen as a justification of the experimental evidence reported in relevant works. Finally, we provide further positive results for two special cases that arise from previous works. The first one is the intriguing case of $3$ agents, for which it is already known that exact maximin share allocations do not always exist (contrary to the case of $2$ agents). We provide a $7/8$-approximation algorithm, improving the previously known result of $3/4$. The second case is when all item values belong to ${0, 1, 2}$, extending the ${0, 1}$ setting studied in Bouveret and Lema^itre. We obtain an exact algorithm for any number of agents in this case.
We consider the problem of fair allocation of indivisible goods to $n$ agents, with no transfers. When agents have equal entitlements, the well established notion of the maximin share (MMS) serves as an attractive fairness criterion, where to qualify as fair, an allocation needs to give every agent at least a substantial fraction of her MMS. In this paper we consider the case of arbitrary (unequal) entitlements. We explain shortcomings in previous attempts that extend the MMS to unequal entitlements. Our conceptual contribution is the introduction of a new notion of a share, the AnyPrice share (APS), that is appropriate for settings with arbitrary entitlements. Even for the equal entitlements case, this notion is new, and satisfies $APS ge MMS$, where the inequality is sometimes strict. We present two equivalent definitions for the APS (one as a minimization problem, the other as a maximization problem), and provide comparisons between the APS and previous notions of fairness. Our main result concerns additive valuations and arbitrary entitlements, for which we provide a polynomial-time algorithm that gives every agent at least a $frac{3}{5}$-fraction of her APS. This algorithm can also be viewed as providing strategies in a certain natural bidding game, and these strategies secure each agent at least a $frac{3}{5}$-fraction of her APS.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا