ترغب بنشر مسار تعليمي؟ اضغط هنا

Random Simple-Homotopy Theory

543   0   0.0 ( 0 )
 نشر من قبل Bruno Benedetti
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We implement an algorithm RSHT (Random Simple-Homotopy) to study the simple-homotopy types of simplicial complexes, with a particular focus on contractible spaces and on finding substructures in higher-dimensional complexes. The algorithm combines elementary simplicial collapses with pure elementary expansions. For triangulated d-manifolds with d < 7, we show that RSHT reduces to (random) bistellar flips. Among the many examples on which we test RSHT, we describe an explicit 15-vertex triangulation of the Abalone, and more generally, (14k+1)-vertex triangulations of Bings houses with k rooms, which all can be deformed to a point using only six pure elementary expansions.

قيم البحث

اقرأ أيضاً

We study the topology of a random cubical complex associated to Bernoulli site percolation on a cubical grid. We begin by establishing a limit law for homotopy types. More precisely, looking within an expanding window, we define a sequence of normali zed counting measures (counting connected components according to homotopy type), and we show that this sequence of random probability measures converges in probability to a deterministic probability measure. We then investigate the dependence of the limiting homotopy measure on the coloring probability $p$, and our results show a qualitative change in the homotopy measure as $p$ crosses the percolation threshold $p=p_c$. Specializing to the case of $d=2$ dimensions, we also present empirical results that raise further questions on the $p$-dependence of the limiting homotopy measure.
If $f:S to S$ is a finite locally free morphism of schemes, we construct a symmetric monoidal norm functor $f_otimes: mathcal H_*(S) tomathcal H_*(S)$, where $mathcal H_*(S)$ is the pointed unstable motivic homotopy category over $S$. If $f$ is finit e etale, we show that it stabilizes to a functor $f_otimes: mathcal{SH}(S) to mathcal{SH}(S)$, where $mathcal{SH}(S)$ is the $mathbb P^1$-stable motivic homotopy category over $S$. Using these norm functors, we define the notion of a normed motivic spectrum, which is an enhancement of a motivic $E_infty$-ring spectrum. The main content of this text is a detailed study of the norm functors and of normed motivic spectra, and the construction of examples. In particular: we investigate the interaction of norms with Grothendiecks Galois theory, with Betti realization, and with Voevodskys slice filtration; we prove that the norm functors categorify Rosts multiplicative transfers on Grothendieck-Witt rings; and we construct normed spectrum structures on the motivic cohomology spectrum $Hmathbb Z$, the homotopy K-theory spectrum $KGL$, and the algebraic cobordism spectrum $MGL$. The normed spectrum structure on $Hmathbb Z$ is a common refinement of Fulton and MacPhersons mutliplicative transfers on Chow groups and of Voevodskys power operations in motivic cohomology.
We present a development of the theory of higher groups, including infinity groups and connective spectra, in homotopy type theory. An infinity group is simply the loops in a pointed, connected type, where the group structure comes from the structure inherent in the identity types of Martin-Lof type theory. We investigate ordinary groups from this viewpoint, as well as higher dimensional groups and groups that can be delooped more than once. A major result is the stabilization theorem, which states that if an $n$-type can be delooped $n+2$ times, then it is an infinite loop type. Most of the results have been formalized in the Lean proof assistant.
We study the effect of edge contractions on simplicial homology because these contractions have turned to be useful in various applications involving topology. It was observed previously that contracting edges that satisfy the so called link conditio n preserves homeomorphism in low dimensional complexes, and homotopy in general. But, checking the link condition involves computation in all dimensions, and hence can be costly, especially in high dimensional complexes. We define a weaker and more local condition called the p-link condition for each dimension p, and study its effect on edge contractions. We prove the following: (i) For homology groups, edges satisfying the p- and (p-1)-link conditions can be contracted without disturbing the p-dimensional homology group. (ii) For relative homology groups, the (p-1)-, and the (p-2)-link conditions suffice to guarantee that the contraction does not introduce any new class in any of the resulting relative homology groups, though some of the existing classes can be destroyed. Unfortunately, the surjection in relative homolgy groups does not guarantee that no new relative torsion is created. (iii) For torsions, edges satisfying the p-link condition alone can be contracted without creating any new relative torsion and the p-link condition cannot be avoided. The results on relative homology and relative torsion are motivated by recent results on computing optimal homologous chains, which state that such problems can be solved by linear programming if the complex has no relative torsion. Edge contractions that do not introduce new relative torsions, can safely be availed in these contexts.
A flag complex can be defined as a simplicial complex whose simplices correspond to complete subgraphs of its 1-skeleton taken as a graph. In this article, by introducing the notion of s-dismantlability, we shall define the s-homotopy type of a graph and show in particular that two finite graphs have the same s-homotopy type if, and only if, the two flag complexes determined by these graphs have the same simplicial simple-homotopy type (Theorem 2.10, part 1). This result is closely related to similar results established by Barmak and Minian (Adv. in Math., 218 (2008), 87-104) in the framework of posets and we give the relation between the two approaches (theorems 3.5 and 3.7). We conclude with a question about the relation between the s-homotopy and the graph homotopy defined by Chen, Yau and Yeh (Discrete Math., 241(2001), 153-170).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا