ﻻ يوجد ملخص باللغة العربية
We investigate the emergence of long-range electron hopping mediated by cavity vacuum fields in disordered quantum Hall systems. We show that the counter-rotating (anti-resonant) light-matter interaction produces an effective hopping between disordered eigenstates within the last occupied Landau band. The process involves a number of intermediate states equal to the Landau degeneracy: each of these states consists of a virtual cavity photon and an electron excited in the next Landau band with the same spin. We study such a cavity-mediated hopping mechanism in the dual presence of a random disordered potential and a wall potential near the edges, accounting for both paramagnetic coupling and diamagnetic renormalization. We determine the cavity-mediated scattering rates, showing the impact on both bulk and edge states. The effect for edge states is shown to increase when their energy approaches the disordered bulk band, while for higher energy the edge states become asymptotically free. We determine the scaling properties while increasing the Landau band degeneracy. Consequences on the quantum Hall physics and future perspectives are discussed.
The control of the electronic properties of materials via the vacuum fields of cavity electromagnetic resonators is one of the emerging frontiers of condensed matter physics. We show here that the enhancement of vacuum field fluctuations in subwavele
We study numerically the charge conductance distributions of disordered quantum spin-Hall (QSH) systems using a quantum network model. We have found that the conductance distribution at the metal-QSH insulator transition is clearly different from tha
Electron pairing is a rare phenomenon appearing only in a few unique physical systems; e.g., superconductors and Kondo-correlated quantum dots. Here, we report on an unexpected, but robust, electron pairing in the integer quantum Hall effect (IQHE) r
Optical cavity QED provides a platform with which to explore quantum many-body physics in driven-dissipative systems. Single-mode cavities provide strong, infinite-range photon-mediated interactions among intracavity atoms. However, these global all-
Nodal semimetals (e.g. Dirac, Weyl and nodal-line semimetals, graphene, etc.) and systems of pinned particles with power-law interactions (trapped ultracold ions, nitrogen defects in diamonds, spins in solids, etc.) are presently at the centre of att