ترغب بنشر مسار تعليمي؟ اضغط هنا

A new theorem on quadratic residues modulo primes

96   0   0.0 ( 0 )
 نشر من قبل Qing-Hu Hou
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $p>3$ be a prime, and let $(frac{cdot}p)$ be the Legendre symbol. Let $binmathbb Z$ and $varepsilonin{pm 1}$. We mainly prove that $$left|left{N_p(a,b): 1<a<p text{and} left(frac apright)=varepsilonright}right|=frac{3-(frac{-1}p)}2,$$ where $N_p(a,b)$ is the number of positive integers $x<p/2$ with ${x^2+b}_p>{ax^2+b}_p$, and ${m}_p$ with $minmathbb{Z}$ is the least nonnegative residue of $m$ modulo $p$.

قيم البحث

اقرأ أيضاً

We present a short, self-contained, and purely combinatorial proof of Linniks theorem: for any $varepsilon > 0$ there exists a constant $C_varepsilon$ such that for any $N$, there are at most $C_varepsilon$ primes $p leqslant N$ such that the least p ositive quadratic non-residue modulo $p$ exceeds $N^varepsilon$.
74 - N. A. Carella 2020
Let $p$ be a large prime, and let $kll log p$. A new proof of the existence of any pattern of $k$ consecutive quadratic residues and quadratic nonresidues is introduced in this note. Further, an application to the least quadratic nonresidues $n_p$ modulo $p$ shows that $n_pll (log p)(log log p)$.
A perfect cuboid is a rectangular parallelepiped whose all linear extents are given by integer numbers, i. e. its edges, its face diagonals, and its space diagonal are of integer lengths. None of perfect cuboids is known thus far. Their non-existence is also not proved. This is an old unsolved mathematical problem. Three mathematical propositions have been recently associated with the cuboid problem. They are known as three cuboid conjectures. These three conjectures specify three special subcases in the search for perfect cuboids. The case of the second conjecture is associated with solutions of a tenth degree Diophantine equation. In the present paper a fast algorithm for searching solutions of this Diophantine equation using modulo primes seive is suggested and its implementation on 32-bit Windows platform with Intel-compatible processors is presented.
146 - Hai-Liang Wu , Li-Yuan Wang 2020
In this paper we study products of quadratic residues modulo odd primes and prove some identities involving quadratic residues. For instance, let $p$ be an odd prime. We prove that if $pequiv5pmod8$, then $$prod_{0<x<p/2,(frac{x}{p})=1}xequiv(-1)^{1+ r}pmod p,$$ where $(frac{cdot}{p})$ is the Legendre symbol and $r$ is the number of $4$-th power residues modulo $p$ in the interval $(0,p/2)$. Our work involves class number formula, quartic Gauss sums, Stickelbergers congruence and values of Dirichlet L-series at negative integers.
Let $qgeq 1$ be any integer and let $ epsilon in [frac{1}{11}, frac{1}{2})$ be a given real number. In this short note, we prove that for all primes $p$ satisfying $$ pequiv 1pmod{q}, quad loglog p > frac{log 6.83}{frac{1}{2}-epsilon} mbox{ and } fra c{phi(p-1)}{p-1} leq frac{1}{2} - epsilon, $$ there exists a quadratic non-residue $g$ which is not a primitive root modulo $p$ such that $gcdleft(g, frac{p-1}{q}right) = 1$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا