ترغب بنشر مسار تعليمي؟ اضغط هنا

Clustering of low mass stars around Herbig Be star IL Cep -- Evidence of Rocket Effect using Gaia EDR3 ?

89   0   0.0 ( 0 )
 نشر من قبل Roy Arun
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the formation and the kinematic evolution of the early type Herbig Be star IL Cep and its environment. The young star is a member of the Cep OB3 association, at a distance of 798$pm$9 pc, and has a cavity associated with it. We found that the B0V star HD 216658, which is astrometrically associated with IL Cep, is at the center of the cavity. From the evaluation of various pressure components created by HD 216658, it is established that the star is capable of creating the cavity. We identified 79 co-moving stars of IL Cep at 2 pc radius from the analysis of {textit Gaia} EDR3 astrometry. The transverse velocity analysis of the co-moving stars shows that they belong to two different populations associated with IL Cep and HD 216658, respectively. Further analysis confirms that all the stars in the IL Cep population are mostly coeval ($sim$ 0.1 Myr). Infrared photometry revealed that there are 26 Class II objects among the co-moving stars. The stars without circumstellar disk (Class III) are 65% of all the co-moving stars. There are 9 intense H$alpha$ emission candidates identified among the co-moving stars using IPHAS H$alpha$ narrow-band photometry. The dendrogram analysis on the Hydrogen column density map identified 11 molecular clump structures on the expanding cavity around IL Cep, making it an active star-forming region. The formation of the IL Cep stellar group due to the rocket effect by HD 216658 is discussed.



قيم البحث

اقرأ أيضاً

Context: Blue horizontal-branch stars are very old objects that can be used as markers in studies of the Galactic structure and formation history. To create a clean sky catalogue of blue horizontal-branch stars, we cross-matched the Gaia data release 2 (DR2) dataset with existing reference catalogues to define selection criteria based on Gaia DR2 parameters. Following the publication of Gaia early data release 3 (EDR3), these methods were verified and subsequently applied to this latest release. Aims: The purpose of this catalogue is to identify a set of blue horizontal-branch star candidates that have been selected using photometric and astrometric observations and exhibits a low contamination rate. Methods: We cross-matched reference blue horizontal-branch datasets with the Gaia DR2 database and defined two sets of selection criteria. Firstly, in Gaia DR2 - colour and absolute G magnitude space, and secondly, in Gaia DR2 - colour and reduced proper motion space. The main-sequence contamination in both subsets of the catalogue was reduced, at the expense of completeness, by concentrating on the Milky Ways Galactic halo, where relatively young main-sequence stars were not expected. Results: We present a catalogue, based on Gaia EDR3, of 57,377 blue horizontal-branch stars. The Gaia EDR3 parallax was used in selecting 16,794 candidates and the proper motions were used to identify a further 40,583 candidates.
The intermediate-mass pre-main sequence Herbig Ae/Be stars are key to understanding the differences in formation mechanisms between low- and high-mass stars. The study of the general properties of these objects is hampered by the fact that few and mo stly serendipitously discovered sources are known. Our goal is to identify new Herbig Ae/Be candidates to create a homogeneous and well defined catalogue of these objects. We have applied machine learning techniques to 4,150,983 sources with data from Gaia DR2, 2MASS, WISE, and IPHAS or VPHAS+. Several observables were chosen to identify new Herbig Ae/Be candidates based on our current knowledge of this class, which is characterised by infrared excesses, photometric variabilities, and H$alpha$ emission lines. Classical techniques are not efficient for identifying new Herbig Ae/Be stars mainly because of their similarity with classical Be stars, with which they share many characteristics. By focusing on disentangling these two types of objects, our algorithm has also identified new classical Be stars. We have obtained a large catalogue of 8470 new pre-main sequence candidates and another catalogue of 693 new classical Be candidates with a completeness of $78.8pm1.4%$ and $85.5pm1.2%$, respectively. Of the catalogue of pre-main sequence candidates, at least 1361 sources are potentially new Herbig Ae/Be candidates according to their position in the Hertzsprung-Russell diagram. In this study we present the methodology used, evaluate the quality of the catalogues, and perform an analysis of their flaws and biases. For this assessment, we make use of observables that have not been accounted for by the algorithm and hence are selection-independent, such as coordinates and parallax based distances. The catalogue of new Herbig Ae/Be stars that we present here increases the number of known objects of the class by an order of magnitude.
Understanding how young stars and their circumstellar disks form and evolve is key to explain how planets form. The evolution of the star and the disk is regulated by different processes, both internal to the system or related to their environment. T he former include accretion of material onto the central star, wind emission, and photoevaporation of the disk due to high-energy radiation from the central star. These are best studied spectroscopically, and the distance to the star is a key parameter in all these studies. Here we present new estimates of the distance to a complex of nearby star-forming clouds obtained combining TGAS distances with measurement of extinction on the line of sight. Furthermore, we show how we plan to study the effects of the environment on the evolution of disks with Gaia, using a kinematic modelling code we have developed to model young star-forming regions.
Classical double-mode pulsators (RR Lyrae stars and delta Cepheids) are important for their simultaneous pulsation in low-order radial modes. This enables us to put stringent constraints on their physical parameters. We use 30 bright galactic doubl e-mode RR~Lyrae (RRd) stars to estimate their luminosities and compare them with those derived from the parallaxes of the recent data release (EDR3) of the Gaia survey. We employ pulsation and evolutionary models, together with observationally determined effective temperatures to derive the basic stellar parameters. Excluding 6 outlying stars (e.g., with blending issues) the RRd and Gaia luminosities correlate well. With the adopted temperature zero point from one of the works based on the infrared flux method, we find it necessary to increase the Gaia parallaxes by 0.02 mas to bring the RRd and Gaia luminosities into agreement. This value is consonant with those derived from studies on binary stars in the context of Gaia. We examine also the resulting period-luminosity-metallicity (PLZ) relation in the 2MASS K band as follows from the RRd parameters. This leads to the verification of two independently derived other PLZs. No significant zero point differences are found. Furthermore, the predicted K absolute magnitudes agree within sigma=0.005-0.01mag.
We seek to find the precursors of the Herbig Ae/Be stars in the solar vicinity within 500 pc from the Sun. We do this by creating an optically selected sample of intermediate mass T-Tauri stars (IMTT stars) here defined as stars of masses $1.5 M_{odo t}leq M_* leq 5 M_{odot}$ and spectral type between F and K3, from literature. We use literature optical photometry (0.4-1.25$mu$m) and distances determined from Gaia DR2 parallax measurements together with Kurucz stellar model spectra to place the stars in a HR-diagram. With Siess evolutionary tracks we identify intermediate mass T-Tauri stars from literature and derive masses and ages. We use Spitzer spectra to classify the disks around the stars into Meeus Group I and Group II disks based on their [F$_{30}$/F$_{13.5}$] spectral index. We also examine the 10$mu$m silicate dust grain emission and identify emission from Polycyclic Aromatic Hydrocarbons (PAH). From this we build a qualitative picture of the disks around the intermediate mass T-Tauri stars and compare this with available spatially resolved images at infrared and at sub-millimeter wavelengths to confirm our classification. We find 49 intermediate mass T-Tauri stars with infrared excess. The identified disks are similar to the older Herbig Ae/Be stars in disk geometries and silicate dust grain population. Spatially resolved images at infra-red and sub-mm wavelengths suggest gaps and spirals are also present around the younger precursors to the Herbig Ae/Be stars. Comparing the timescale of stellar evolution towards the main sequence and current models of protoplanetary disk evolution the similarity between Herbig Ae/Be stars and the intermediate mass T-Tauri stars points towards an evolution of Group I and Group II disks that are disconnected, and that they represent two different evolutionary paths.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا