ﻻ يوجد ملخص باللغة العربية
Understanding how young stars and their circumstellar disks form and evolve is key to explain how planets form. The evolution of the star and the disk is regulated by different processes, both internal to the system or related to their environment. The former include accretion of material onto the central star, wind emission, and photoevaporation of the disk due to high-energy radiation from the central star. These are best studied spectroscopically, and the distance to the star is a key parameter in all these studies. Here we present new estimates of the distance to a complex of nearby star-forming clouds obtained combining TGAS distances with measurement of extinction on the line of sight. Furthermore, we show how we plan to study the effects of the environment on the evolution of disks with Gaia, using a kinematic modelling code we have developed to model young star-forming regions.
I review theoretical models of star formation and how they apply across the stellar mass spectrum. Several distinct theories are under active study for massive star formation, especially Turbulent Core Accretion, Competitive Accretion and Protostella
Star formation is a multi-scale, multi-physics problem ranging from the size scale of molecular clouds ($sim$10s pc) down to the size scales of dense prestellar cores ($sim$0.1 pc) that are the birth sites of stars. Several physical processes like tu
We report on the first birds-eye view of the innermost accretion disk around the high-mass protostellar object G353.273+0.641, taken by Atacama Large Millimter/submillimeter Array long-baselines. The disk traced by dust continuum emission has a radiu
We have undertaken a systematic study of pre-main sequence (PMS) stars spanning a wide range of masses (0.5 - 4 Msolar), metallicities (0.1 - 1 Zsolar) and ages (0.5 - 30 Myr). We have used the Hubble Space Telescope (HST) to identify and characteris
We study the formation and the kinematic evolution of the early type Herbig Be star IL Cep and its environment. The young star is a member of the Cep OB3 association, at a distance of 798$pm$9 pc, and has a cavity associated with it. We found that th