ترغب بنشر مسار تعليمي؟ اضغط هنا

On the relevance of Reynolds stresses in resolvent analyses of turbulent wall-bounded flows

82   0   0.0 ( 0 )
 نشر من قبل Carlo Cossu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ability of linear stochastic response analysis to estimate coherent motions is investigated in turbulent channel flow at friction Reynolds number Re$_tau$ = 1007. The analysis is performed for spatial scales characteristic of buffer-layer and large-scale motions by separating the contributions of different temporal frequencies. Good agreement between the measured spatio-temporal power spectral densities and those estimated by means of the resolvent is found when the effect of turbulent Reynolds stresses, modelled with an eddy-viscosity associated to the turbulent mean flow, is included in the resolvent operator. The agreement is further improved when the flat forcing power spectrum (white noise) is replaced with a power spectrum matching the measures. Such a good agreement is not observed when the eddy-viscosity terms are not included in the resolvent operator. In this case, the estimation based on the resolvent is unable to select the right peak frequency and wall-normal location of buffer-layer motions. Similar results are found when comparing truncated expansions of measured streamwise velocity power spectral densities based on a spectral proper orthogonal decomposition to those obtained with optimal resolvent modes.



قيم البحث

اقرأ أيضاً

A new scaling is derived that yields a Reynolds number independent profile for all components of the Reynolds stress in the near-wall region of wall bounded flows, including channel, pipe and boundary layer flows. The scaling demonstrates the importa nt role played by the wall shear stress fluctuations and how the large eddies determine the Reynolds number dependence of the near-wall turbulence behavior.
The cross-spectral density (CSD) of the non-linear forcing in resolvent analyses is here quantified for the first time for turbulent channel flows. Direct numerical simulations (DNS) at $Re_{tau} =179$ and $Re_{tau} =543$ are performed. The CSDs are computed for highly energetic structures typical of buffer-layer and large-scale motions, for different temporal frequencies. The CSD of the non-linear forcing is shown not to be uncorrelated (white) in space, which implies the forcing is structured. Since the non-linear forcing is non-solenoidal by construction and the velocity of an incompressible flow is affected only by the solenoidal part of the forcing, this solenoidal part is evaluated. It is shown that the solenoidal part of the non-linear forcing is the combination of oblique streamwise vortices and a streamwise component which counteract each other, as in a destructive interference. It is shown that a rank-2 approximation of the forcing, with only the most energetic SPOD (spectral proper orthogonal decomposition) modes, leads to the bulk of the response. The projections of the non-linear forcing onto the right-singular vectors of the resolvent are evaluated. The left-singular vectors of the resolvent associated with very low-magnitude singular values are non-negligible since the non-linear forcing term has a non-negligible projection onto the linear sub-optimals of resolvent analysis. The same projections are computed when the forcing is modelled with an eddy-viscosity approach. It is clarified that this modelling improves the accuracy of the prediction since the projections are closer to those associated with the non-linear forcing from DNS data.
On its way to turbulence, plane Couette flow - the flow between counter-translating parallel plates - displays a puzzling steady oblique laminar-turbulent pattern. We approach this problem via Galerkin modelling of the Navier-Stokes equations. The wa ll-normal dependence of the hydrodynamic field is treated by means of expansions on functional bases fitting the boundary conditions exactly. This yields a set of partial differential equations for the spatiotemporal dynamics in the plane of the flow. Truncating this set beyond lowest nontrivial order is numerically shown to produce the expected pattern, therefore improving over what was obtained at cruder effective wall-normal resolution. Perspectives opened by the approach are discussed.
178 - Paul Manneville 2017
Despite recent progress, laminar-turbulent coexistence in transitional planar wall-bounded shear flows is still not well understood. Contrasting with the processes by which chaotic flow inside turbulent patches is sustained at the local (minimal flow unit) scale, the mechanisms controlling the obliqueness of laminar-turbulent interfaces typically observed all along the coexistence range are still mysterious. An extension of Waleffes approach [Phys. Fluids 9 (1997) 883--900] is used to show that, already at the local scale, drift flows breaking the problems spanwise symmetry are generated just by slightly detuning the modes involved in the self-sustainment process. This opens perspectives for theorizing the formation of laminar-turbulent patterns.
We explore the role of gravitational settling on inertial particle concentrations in a wall-bounded turbulent flow. While it may be thought that settling can be ignored when the settling parameter $Svequiv v_s/u_tau$ is small ($v_s$ - Stokes settling velocity, $u_tau$ - fluid friction velocity), we show that even in this regime the settling may make a leading order contribution to the concentration profiles. This is because the importance of settling is determined, not by the size of $v_s$ compared with $u_tau$ or any other fluid velocity scale, but by the size of $v_s$ relative to the other mechanisms that control the vertical particle velocity and concentration profile. We explain this in the context of the particle mean-momentum equation, and show that in general, there always exists a region in the boundary layer where settling cannot be neglected, no matter how small $Sv$ is (provided it is finite). Direct numerical simulations confirm the arguments, and show that the near-wall concentration is highly dependent on $Sv$ even when $Svll 1$, and can reduce by an order of magnitude when $Sv$ is increased from $O(10^{-4})$ and $O(10^{-2})$. The results also show that the preferential sampling of ejection events in the boundary layer by inertial particles when $Sv=0$ is profoundly altered as $Sv$ is increased, and is replaced by a preferential sampling of sweep events due to the onset of the preferential sweeping mechanism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا